
Imaginary Cubes
— Objects with Three Square Projection Images —

Hideki Tsuiki
Graduate School of Human and Environmental Studies

Kyoto University
tsuiki@i.h.kyoto-u.ac.jp

Abstract
An imaginary cube is a three dimensional object which has square projections in three orthogonal directions just as
a cube has. In this paper, we study imaginary cubes and present sculptures based on imaginary cubes. We show that
there are 16 kinds of minimal convex imaginary cubes. The list of 16 representative minimal convex imaginary cubes
contains, as well as a regular tetrahedron and a cuboctahedron, a hexagonal bipyramid imaginary cube, which is a
double imaginary cube, and a triangular antiprism imaginary cube, which plays an important role in the construction
of the sculptures. Then, we present two Imaginary Cube Sculptures. Each of them is composed of all the 16
representative minimal convex imaginary cubes and forms an imaginary cube as a whole. Thus, they reveal uniform
overall structures though they are composed of different shapes.

1 Introduction.

Imagine a three dimensional object which has square projections in three orthogonal directions. A cube
has this property, but it is not the only answer and there are plenty of examples like a regular tetrahedron
and a cuboctahedron (Figure 1 (a) and (b), see also No. 13 and No. 1 of Table 1). A regular octahedron
(Figure 3(b)) also has this property and the intersection of the three right square prisms defined by its square
projections is a rhombic dodecahedron, which also has this property. However, the inclinations of the three
squares are different from those of cubes, and let us exclude them by restricting our interest to the case that
the edges of a square shadow image are parallel to the other two orthogonal directions just like a cube. From
an object with this property, one can imagine a cube which has the same three square projections. Therefore,
we call such an object animaginary cube(I-cubein short). Figure 1 (c) and (d) are two important examples
of polyhedral imaginary cubes, which are explained in Section 3.

 

(a) (b) (c) (d)
Figure 1 : Examples of polyhedral imaginary cubes, (a) a regular tetrahedron, (b) a cuboctahe-
dron, (c) a hexagonal bipyramid which has 12 isosceles triangle faces with the height3/2 of a
base, (d) a triangular antiprismoid obtained by truncating the vertices of one base of a regular
triangular prism whose height is

√
6/4 of an edge of a base.
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In this paper, we study imaginary cubes and present sculptures based on them. In the next section, we
study minimal convex imaginary cubes and show that there are 16 kinds of minimal convex imaginary cubes
modulo rotational congruence. In Section 3, we explain some of them in detail. In particular, we show some
remarkable properties of a hexagonal bipyramid imaginary cube and a triangular antiprismoid imaginary
cube presented in [2]. After that, we move to non-convex imaginary cubes. In Section 4, we show that each
Latin square defines a cubic imaginary cube. In Section 5, we present two imaginary cube sculptures each
of which is composed of all the 16 representative minimal convex imaginary cubes and forms an imaginary
cube as a whole.

2 Minimal Convex Imaginary Cubes.

For a cubeC, we say that an object is animaginary cube of C(I-cube of Cin short) if it produces the same
three square projection images asC. We start with the problem of characterizing I-cubes of a given cube
C. First, if there is an I-cube ofC, then its convex hull is also an I-cube ofC. Therefore, we only consider
convex ones from which all the I-cubes ofC are obtained by making some hollows which do not change the
three square projection images. Next, if a convex I-cube ofC is given, then any convex object which contains
it and contained inC is also a convex I-cube ofC. Therefore, we are particularly interested in minimal ones.
In what follows, we fix a cubeC and study the problem of characterizing minimal convex I-cubes ofC.

It is immediate that a convex object is an imaginary cube ofC if and only if it is inC and has intersections
with all the 12C-edges. Therefore, a minimal convex I-cube ofC is the convex hull of its intersection with
theC-edges, which is a polyhedron. Thus, our first observation is that a minimal convex I-cube ofC is a
polyhedron all of whose vertices are onC-edges and eachC-edge contains at least one vertex. Next, suppose
that two vertices are on the sameC-edge. If one of them is not aC-vertex, then we can remove it to have a
smaller I-cube. Therefore, our second observation is that if there are two vertices on oneC-edge, they should
be the two endpoints.

As the third observation, if the three adjacentC-vertices of aC-vertexv are vertices of a minimal convex
I-cube, thenv is not a vertex of the I-cube by minimality. On the other hand, if a set ofC-vertices which does
not contain a vertex and its three adjacent vertices is given, then we can form a minimal convex I-cube ofC
by selecting one non-endpoint from each of theC-edges whose endpoints are not in the set. Note that it is
minimal because if we remove one vertex, then it no longer satisfies the first observation. Therefore, we can
obtain all the minimal convex imaginary cubes ofC in this way.

As the “Cube-vertices” column of Table 1 shows, there are 16 subsets of the set ofC-vertices which
satisfy this condition if we identify rotationally congruent ones. Since No.10(L) and No.10(R) form a pair of
mirror images and all the other ones have mirror symmetry, we have 15 subsets if we also identify reflectively
congruent ones. We define that two minimal convex I-cubes of a cubeC are rotationally (or reflectively)
equivalent if they have the same set ofC-vertices modulo rotational (or reflective) congruence. There are
16 (or 15) equivalence classes of minimal convex I-cubes of a given cube modulo rotational (or reflective)
equivalence. This equivalence is natural in that when two equivalent minimal convex I-cubes ofC are looked
at from the sameC-surface, one can see the same kind of polygons connected in the same way by edges.

Now, we simply say that an object is aminimal convex imaginary cubeif it is a minimal convex imagi-
nary cube of some cube. Though some imaginary cubes are minimal convex imaginary cubes of two different
cubes, such an imaginary cube is in the same equivalence class (No. 5) for both of the cubes, as we will
explain in the next section. Therefore, we can say that there are 16 (or 15) equivalence classes of minimal
convex imaginary cubes modulo rotational (or reflective) equivalence.

In Table 1, we list imaginary cubes obtained by taking middle points of cube-edges as non cube-vertices.
This choice of the representative of each equivalence class is natural in that, for almost all of the imaginary
cubes in this list, the rotation group (or the full symmetry group) of such an imaginary cube is equal to that
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Number
(#faces,

#vertices)

Cube-
vertices

Imaginary
cube

1
(14,12)

Cubocta-
hedron

 

 

1 2

5

43

7 1

6

{}  

9
(10,8)

Quadric
antiprismoid

 

 

{1,2,3,4}  

2
(13,10)

 

 

{1}  

10(L)
(10,7)

 

 

{1,2,3,6}  

3
(12,9)

 

 

{1,2}  

10(R)
(10,7)

 

 

{1,2,3,7}  

4
(11,8)

 

 

{1,4}  

11
(8,6)

 

 

{1,2,3,8}  

5
(12,8)

Hexagonal
bipyramid

 

 

{1,8}  

12
(8,6)

 

 

{1,2,7,8}  

6
(11,8)

 

 

{1,2,3}  

13
(4,4)

Regular
tetrahedron

 

 

{1,4,6,7}  

7
(10,7)

 

 

{1,2,7}  

14
(8.6)

 

 

{1,2,3,6,7}  

8
(8,6)

Triangular
antiprismoid

 

 

{1,4,6}  

15
(8,6)

Triangular
antiprism

 

 

{1,2,3,6,7,8}  

Table 1: The 16 (or 15) representatives of minimal convex imaginary cubes.
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of the corresponding figure of cube-vertices which is a cube with some vertices colored. The only exception
is No.5, which has a bigger group as we will explain in the next section. Among these imaginary cubes,
No.10(L) and No.10(R) are mirror images and all the other ones have mirror symmetry. Note that all of
these representative imaginary cubes have rotational symmetry, even No.10(L) and No.10(R).

Normally, one cannot realize at a glance that a given polyhedron is an imaginary cube. The author has
an exhibition at Kyoto University Museum displaying models of imaginary cubes and asking guests to put
them in clear cubic boxes. It is not an easy task and it forms a good mathematical puzzle. Once an object is
in a box, one can realize that it is an imaginary cube by looking at it from the surface directions of the box.

(a) (b)

Figure 2 : (a) Wooden imaginary cubes. (Woodworks by Hiroshi Nakagawa.) (b) The same as (a)
from a different inclination.

One can also consider the same kind of question for regular octahedrons. That is, to characterize
three dimensional objects which have square projections in three orthogonal directions just like a regular
octahedron. For this case, a regular octahedron is the only minimal convex one, with a rhombic dodecahedron
the maximal one.

3 Hexagonal Bipyramid and Triangular Antiprism Imaginary Cubes.

We explain more about some of the representative imaginary cubes in Table 1.

No. 1 (Figure 1(b)): Cuboctahedron.A cuboctahedron is an imaginary cube with no cube-vertices.

No.13 (Figure 1(a)): Regular tetrahedron.A regular tetrahedron is obtained by selecting as the vertices
every other vertex of a cube. Therefore, it is an imaginary cube all of whose vertices are cube-vertices.

No 15: Triangular antiprism imaginary cube. A triangular antiprism with the sides right-angled isosceles
triangles is an imaginary cube all of whose vertices are cube-vertices.

No. 5 (Figure 1(c)): Hexagonal bipyramid imaginary cube.This dodecahedron is composed of two copies
of a regular hexagonal pyramid whose side faces are isosceles triangles with the height 3/2 of the base. It
has a square appearance when it is looked at from each of the 12 faces. We call an imaginary cube adouble
imaginary cubeif it has square projections in 6 directions which are divided into two sets of three orthogonal
directions. This dodecahedron is a double imaginary cube and the two cubes of which it is an imaginary
cube share a pair of opposite vertices and one cube is obtained by rotating the other one by 60 degrees. Note
that this double imaginary cube is the intersection of the two cubes. It means that it is a maximal double
imaginary cube as well as a minimal one and therefore it is the only convex double imaginary cube of the
two cubes. The rotation group of this imaginary cube is the dihedral groupD6 of order 12, which is not a
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subgroup of the rotation group of a cube; half of the rotations of this object map one cube to the other cube.
A fractal sculpture based on this polyhedron is presented in [2, 3].

More generally, consider the intersection of two different cubes which share a pair of opposite vertices.
We have a dodecahedron which is a convex double imaginary cube of the two cubes as Figure 2(b) shows.
One can easily show that all the convex double imaginary cubes are obtained in this way.

(a) (b)

Figure 3 : Double imaginary cubes obtained as the intersection of two cubes. One cube is ob-
tained by rotating the other one by (a): 60 degrees, (b): 42 degrees.

No.8 (Figure 1(d)): Triangular antiprismoid imaginary cube. Consider the polyhedron constructed from
a regularn-sided prism by truncating each vertex of one base at middle points of the edges of the base and
the adjoining vertex on the opposite base. We call the prismatoid constructed in this way ann-antiprismoid.
Figure 1(d) is a triangular antiprismoid constructed from a regular triangular prism with the height

√
6/4 of

an edge of a base. On the other hand, the imaginary cube No.8 is an octahedron with two parallel regular
triangular faces and the size of one of them is half of the other. It means that it is a triangular antiprismoid
and through some calculation, one can see that Figure 1(d) and Table 1(8) are the same object.

Figure 4 shows yet another property of this octahedron. It has the property that the three diagonals
connecting two opposite vertices intersect at one point and are orthogonal to each other, and the intersection
point divides each of the diagonals by the ratio of 1:2. Therefore, with some coordinate system, the six
vertices are on the three axes of coordinates and the distances from the origin to the three vertices on the
negative sides are twice those on the positive sides. Note that if all the six vertices have the same distance
from the origin, then it is a regular octahedron. This property is used in Section 5 for constructing Imaginary
Cube Sculptures.

y

x

z

(a)

y

x

z

(b)

Figure 4 : (a) Triangular antiprismoid imaginary cube. (b) regular octahedron.

Hexagonal bipyramid imaginary cubes and triangular antiprismoid imaginary cubes are studied in [2],
and it is shown that they are closely related and they together form a tiling of the three-dimensional space.

Imaginary Cubes—Objects with Three Square Projection Images

163



4 Imaginary cubes induced by Latin squares

In this and the next section, we show a procedure to combinen2 imaginary cubes into one imaginary cube
following the structure of a Latin square of sizen×n (n= 2,3, . . .). A Latin square [1] is ann×n table filled
with numbers from 1 ton so that each number appears only once in each column and each row. When a Latin
square is given, one can consider each number in a cell as the height and consider that it is specifyingn2 cubes
out ofn×n×n lattice of cubes so that they are not overlapping from all the three surface directions. That is,
a Latin square specifies an imaginary cube which is composed ofn2 cubes. We call such an imaginary cube
a cubic imaginary cube of leveln.

In a previous paper [2], the author considered such an imaginary cube as an iterated function system
(IFS) composed ofn2 dilation functions with scale 1/n which map the cube surrounding then2 cubes to
component cubes, and studied fractals with the fractal dimension two generated by such IFS’s. He showed
that a fractal obtained in this way is an imaginary cube, and thus a polyhedron defined as the convex hull
of such a fractal is also an imaginary cube. Whenn = 2, there is only one cubic imaginary cube and the
corresponding fractal is the Sierpinski tetrahedron, whose convex hull is a regular tetrahedron. Whenn= 3,
there are two cubic imaginary cubes whose induced fractals have the hexagonal bipyramid imaginary cube
and the triangular antiprismoid imaginary cube as convex hulls. Whenn= 4, there are 36 cubic imaginary
cubes modulo rotational and reflective equivalences and there are only two connected ones, which are shown
in Figure 5. One of them generates the Sierpinski tetrahedron as the fractal, as is the case forn= 2. The other
one generates a fractal imaginary cube whose convex hull is a variant of a cuboctahedron, which belongs to
the equivalence class No.1 in table 1. See [2] for the details of these fractals.

(1):

(1-a) (1-b) (1-c) (1-d)

(2):

(2-a) (2-b) (2-c) (2-d)

Figure 5 : (a) Latin squares, (b) corresponding cubic imaginary cubes, (c) fractals generated by
cubic imaginary cubes in (b), (d) convex hulls of the fractals in (c).

5 Combining Imaginary Cubes into one imaginary cube

Replacing then2 cubes of a cubic imaginary cube withn2 imaginary cubes, one can form a new imaginary
cube. As we have studied, there are 16 representative minimal convex imaginary cubes. The author combined
them into two imaginary cubes according to the two cubic imaginary cubes (1-b) and (2-b) in Figure 5. Let
us call them Imaginary Cube Sculptures with the Sierpinski Tetrahedron Layout (Sculpture #1 in short) and
with the Cuboctahedron-like Layout (Sculpture #2), respectively. As we have noted these imaginary cubes
are the only connected cubic imaginary cubes of level four, and they have the same symmetry as a regular
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(a) (b) (c)

Figure 6 : Imaginary Cube Sculpture – Sierpinski Tetrahedron Layout – (2010, Paper).

(a) (c) (d) (b)

Figure 7 : Imaginary Cube Sculpture – Cuboctahedron-like Layout – (2008, Paper).

tetrahedron. He carefully arranged the allocation and orientation of the component imaginary cubes so that
components in connected cubes share a vertex. Moreover, he arranged them so that the holes have the forms
of a regular octahedron and a triangular antiprismoid, which we explain in detail.

 x

y

z

(a) (b) (c)

Figure 8 : The triangular antiprismoid shape of the hole surrounded by imaginary cubes No. 6,
8, 10(L), and 10(R) in Sculpture #2. The hole at the center of (b) has the form (c).

In the cubic imaginary cube Figure 5 (1-b) and (2-b), four cubes are connected in the form of Figure 8
(a) at four and five places, respectively. At each of them, adjoining imaginary cubes are not connected at the
center of the four pieces. Therefore, there is a hole in the middle of them. If we have the axes of coordinates
as in Figure 8 (a), around each hole, there are six points where two imaginary cubes meet and they are on the
three axes of coordinates. The hole at the center of Sculpture #2 has the form of a regular octahedron, and
all the other holes of the two sculptures have the forms of a triangular antiprismoid imaginary cube. Recall
that the three lines connecting opposed vertices of a triangular antiprismoid imaginary cube are orthogonal
to each other (Figure 4). In addition, Sculpture #2 can stand as in Figure 7(a) (and also Figure 9(a)) on
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(a) (b)

Figure 9 : Imaginary Cube Sculpture #2 (2010, Wood, with Hiroshi Nakagawa).

imaginary cubes 6, 10(L) 10(R) because they have cube-vertices at the bottom (Figure 8(b)).

They are colored so that those faces and edges with the same surface direction of the cube have the same
color. Therefore, one can easily find the square appearances. When it is put as in Figure 7(a), yellow, ma-
genta, and cyan come to the upper side and red, green and blue come to the lower side, with complementary
color coming to the opposite side. Figure 7(b,c,d) are pictures from the upper three orthogonal directions.

The author assembled with Hiroshi Nakagawa a wooden version of Sculpture #2 (Figure 9). First,
they formed dark-colored wooden frames of four triangular antiprismoids and one regular octahedron which
consist only of the edges. Then, they glued the 16 imaginary cubes on faces of these frames.

Imaginary Cube Sculptures are composed of polyhedra with different shapes. However, they have
uniform structures in that each of the components comes to be a square and the whole structure also comes
to be a large square from each of the three orthogonal directions. Their overall shapes are also beautiful in
that they roughly have the symmetry of a regular tetrahedron. Note also that the polyhedral shapes of the
holes of Sculpture #2 make it possible to form a wooden sculpture though the components are only connected
through vertices. More importantly, the component polyhedra of these sculptures are not arbitrary; they are
the representatives of the set of minimal convex imaginary cubes.
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