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Abstract 

 
Iterated function systems with contracting functions have been widely applied in contexts relating art and science. This paper 

explores iterated function systems which consist of expanding linear functions. An area in the plane is divided in parts which are 

defined implicitly by an inverse function technique. With each part, an expanding function is associated. A coloring technique is 

proposed which yields textures suggestive of sophisticated patterns of depth and light. It is briefly described how a rendering 

technique for recurrent origami can be obtained as a special case of this method. 

 

 

Introduction 

 
Iterated function systems defined by contracting functions are a familiar tool among researchers bridging 

art and science. Such systems yield compact codes for a large variety of images, which can be generated at 

any desired resolution. This paper describes a fractal image creation technique based on iterated function 

systems with expanding functions. The method is based on an inverse technique for iterated function 

systems consisting of two linear holomorphic functions [1]. It is described in this paper in a geometric 

way. I briefly explain how a rendering technique for recurrent origami can be obtained a special case of 

this method. 

 

Suppose that an iterated function system F is defined by n functions fj (j=1,…,n). In the classical 

treatment all functions fj need to be contracting in all directions (see for instance chapter seven in [2] for a 

formal specification of this constraint). I call a function ‘expanding’ if its inverse is contracting. Function 

systems with linear expanding functions have been considered in the context of inverse techniques. In the 

early nineties Prusinkiewicz formulated such a technique which allows one to color the complement of 

attractors [3]. I confine myself to an informal description. Suppose that P is a point on the outside of the 

attractor of F. Let C be a contour which encloses the attractor. Consider compositions of s inverse 

functions 
1 2

1 1 1...
sr r rf f f

− − −
with {1,..., }, 1,...,

j
r n j s∈ = . Since the inverse functions are expanding, each 

composition of sufficient length will map P onto a point on the outside of C. Consider the composition for 

which P travels the longest path inside C before bailing out. The length of this path associates a number 

with P which can be transformed into one or three color values.  

 

This type of inverse technique has one advantage. The color of a point P is determined by an 

algorithm that takes this point as argument. In the direct method, one has to wait and see if the chaos game 

lands on the corresponding pixel until one knows if P is given a colour value (and if so, wait longer until a 

relative frequency of pixel visitation can be reliably determined). In this sense, an inverse technique acts 

like the usual method for coloring points of non-linear escape fractals. But there are two drawbacks. First, 

in contrast with the latter, the inverse technique needs calculation of many trajectories in P. The number of 

trajectories required increases combinatorially with n, which makes this method in most cases practically 
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unfeasible if n is larger than 2. Second, it only colors the complement of attractors. There are many 

situations in which the attractors themselves, and the fractal textures defined on them, are visually 

interesting objects. In this paper I present a geometric formulation of a different inverse technique, which 

solves both problems. First I formulate it in a general way. Then I describe two ways in which it 

can be specified. 

 

 

Iterated function systems with expanding functions 
 
The basic concepts of the present method are illustrated in Figure 1. Let A be an area in the plane. S1,…, 

Sm are disjoint subsets of A. Let B be the set defined by 
1,...,

j

j m

B S
=

= ∪ . Note that B A⊆ . I confine the 

illustrations to the case in which B is a strict part of A. With each subset Sj, an expanding linear function hj 

is associated which maps Sj onto hj(Sj), which is assumed to be a subset of A as well. Consider the function 

:g B A→  which is defined by g(P)=hj (P) if 
j

P S∈ (j=1,…,m). The algorithm considered in this paper 

defines for each point P B∈  a series of points P0,…PN. The first point P0 is initialized by P0=P. Then, P1 

is defined by P1=g(P0). If 1P B∈ , P2=g(P1). Else, if 1 \P A B∈ , the algorithm terminates. This process is 

iterated. If 1( )
k

g P B− ∈ , Pk=g(Pk−1), else the algorithm halts. If the algorithm terminates at step t with t<N, 

a series of N points is constructed by adding N−t times the origin O to P0,…Pt. 

 

In the two last illustrations of next section, the algorithm is made slightly more sophisticated. 

Suppose that at iteration t a point \
t

P A B∈ is produced. Then the algorithm continues but Pt is replaced 

by 
1

1 ( )
t

h P
−

. For this modification, also points in the complement of B (and hence points in the 

complement of A) can be processed and lead to a series P0,…PN. Since 
1

1h
−

is contracting, features in the 

inside of A reappear in magnified version in the complement of A.  

 

The sequence P0,…,PN is turned into a color value as follows: q points Q1,…,Qq are selected in the 

plane (these are allowed to be in A but do not have to). For each point Pk in the series P0,…PN, the 

distance dkj to all points Qj is calculated (j=1,…,q). The inverses of the q distances associated with Pk are 

normalized to one, yielding coefficients ckj. Then, with each point Qj a quantity φj is associated in 

accordance with 

 

1,...

( ) /
j kj

k N

P c k
ρφ

=

= ∑  

where ρ is a constant which was put to ρ =0.5 in the illustrations which follow. These quantities are 

linearly combined into ϕ(P): 

 

1,...,

( ) ( )
j j

j q

P w Pϕ φ
=

= ∑  

where wj (j=1,…,q) are fixed coefficients. (Exploration of expressions with non-linear combinations, such 

as combinations of squares of φj, can be aesthetically rewarding as well). After ϕ(P) has been calculated 

for each point P B∈ , it is normalized between zero and one, and next it is turned into three color values 

by a colormap. In all illustrations in this paper, four points Qj are used, which are located at the vertices of 

a square with center at the origin, and which is a scaled version of the unit square. Informally, the points 

Qj define neighbourhoods which act as traps. The weight of trap j is a function of the inverse distance 
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between Pk and the defining point Qj of the trap (which is expressed by ckj), and different traps contribute 

in different ways to the quantity onto which the colormap is applied (which is expressed by wj).  
 
 

Illustrations for the square 

 
In the first specification of the general concepts, I use an iterated rotation technique to divide B into 

disjoint subsets Sj. In Figure 1, A is the unit square with center at the origin. B is a smaller square with side 

2a and four sets Sj are defined by: 

 

1 {( , ) | ( ) & ( ) & ( ) & ( )}S x y x b x a y a y b= > − < > − <  

2 {( , ) | ( ) & ( ) & ( ) & ( )}S x y x b x a y b y a= > − < > <  

3 {( , ) | ( ) & ( ) & ( ) & ( )}S x y x a x b y b y a= > − < − > − <

4 {( , ) | ( ) & ( ) & ( ) & ( )}S x y x a x b y a y b= > − < − > − < −  

 

with b<a. Similar partitions for the other regular polygons are obtained in a straightforward way (below 

this is illustrated for the octagon). In case of a square, a scaling is applied onto B with center in the lower 

right vertex of B, which results in S1. Then, Sj (j=2,3,4) is the part of B which is not included in 

1 1...
j

S S −∪ ∪  and which, after rotation around the origin with angle − (j−1)2π/4, overlaps with S1. In 

Figure 4 this procedure is applied to the octagon, but Sj (j=2,…,8) was obtained for rotation of the reduced 

octagon with different angles. Variation of these rotation angles, and the resulting variation in the 

definition of Sj, is one way to find aesthetically relevant variations of images.  
 

 
Figure 1: Left: Partition of subset B of A into four parts Sj. Right: Image of the parts after application of g 

(the images of S2 and S3 are identical and include the image of S4) 
 

There are different ways to define the functions hj, but the most natural strategy is to relate hj with 

the way in which the partition of B into the sets Sj was obtained. If these sets are obtained by iterated 

rotation, the simplest strategy is to dissect the action of hj into three steps. I specify the procedure for the 

case of a square set A, but the generalization for other regular polygons is straightforward. Consider a 

point 
j

P S∈ . First P is rotated around the origin with angle − (j−1)2π/4, so that the resulting point, which 

is denoted Pr,j, is in S1 (points in S1 are left unmodified by this step). The second step is the same for all hj. 

Let C denote the center of S1. As can be verified on basis of Figure 1, C has coordinates ((a−b)/2, 

S1 

S2 S3 

S4 

(a,0) 

(0,b) 

g(S1) 
g(S2)

= 

g(S3) 

g(S4) 

A 

B 

A 
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(−a+b)/2). Let γ=2/(a+b). Then, Pr,j is translated with the vector which connects C with the origin. 

Subsequently, the resulting point is subject to a scaling with factor γ and center at the origin (the effect of 

this scaling on the translation of area S1 is that the image of the latter coincides with A). These two actions 

define the second step. Third, the point obtained is rotated around the origin with an angle which is a 

multiple of 2π/4, and/or subject to a reflection. The reflections and rotations in the third step can be 

chosen different for different j. (The case of identical rotations and absence of reflection corresponds to 

the situation considered in [1]). 

 

Turning to complex number notation, the equations involved become very simple. For each 

point
j

P S∈ , Pr,j can be written as Pr,j =P exp(−i (j−1)2π/4) (where i is the imaginary unit). The point 

onto which Pr,j is mapped after the second step is γ(Pr,j−C), with C=  (a−b)/2+i(−a+b)/2. Then, the 

transformations hj which lead to Figure 2 simply read 
*

,( ) ( ( ))j r jh P P Cγ= − , where 
*
 denotes the 

complex conjugate (which corresponds to a reflection; this choice of hj is illustrated in the right part of 

Figure 1). The transformations used to obtain Figure 3 are: 

 

1 ,1( ) ( ) exp( 2 / 4)
r

h P P C iγ π= − ;  2 ,2( ) ( ) exp( 6 / 4)
r

h P P C iγ π= −  

3 ,3( ) ( ) exp( 6 / 4)
r

h P P C iγ π= − ; 4 ,4( ) ( ) exp( 2 / 4)
r

h P P C iγ π= −  

 

The two other illustrations in this section are based on octagonal sets A and B. The dissection of B in eight 

subsets is shown in Figure 4. With each set Sj (j=1,…,8) a function hj is associated in accordance with the 

recipe specified above. The rotations in the third step of the definition of hj were put equal to each other. 

The only difference between the algorithms leading to Figures 5 and 6 is that, in case of Figure 5, the 

rotations in the third step rotate with an angle 4π/8, whereas in Figure 6, this angle is equal to 2π/8. As 

was mentioned above, the algorithm used for these figures includes the additional step according to which 

a point not in \A B is contracted toward the center of S1 with factor δ (which was put equal to 0.8 in the 

illustrations). 

 

             
           

Figure 2: (left) First illustration for square A, with a=0.9925 and b=0.75 and Figure 3: (right) 

Second illustration for square A, with same sets Sj and same values of a and b, but for different definition 

of hj 
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Figure 4:(left) Partition of octagonal set B into 8 sets Sj  and Figure 5: (right) Octagon-based illustration 

with rotation angle in third step of hj equal to 4π/8  

 

 

 
 

Figure 6: Octagon-based illustration with rotation angle in third step of hj equal to 2π/8 

 

The Art of Iterated Function Systems with Expanding Functions

59



Definition of Sj and hj by origami 

 

In the second specification of the general concepts, Sj and hj are defined by an origami process. 

Suppose that a polygon B is folded so that a smaller version of the same polygon is obtained. 

After unfolding, the sets Sj are specified by the partition generated by the crease pattern. In order 

to define hj, the reduced polygon is magnified (and possibly rotated) so that it coincides with A. 

For each set Sj, this defines an expanding function which maps Sj onto a subset of A. In 

combination with the algorithm described above, this is basically all it takes to obtain Figure 8 on 

basis of the folding described in Figure 7 (Figure 7 for simplicity only shows B. A is a 

hexadecagon slightly larger than the blue hexadecagon B). Note that the process by which the 

reduced polygon is magnified has an alternative description. Mathematically, this is equivalent 

with downscaling the crease pattern to the reduced polygon, after which the folding is iterated. 

Therefore, the concepts described offer a way to create patterns corresponding to recurrent 

origami (some possibilities for variation, and a more extended discussion is given in [4]). 

 

 
 

Figure 7: The blue hexadecagon B is folded inward onto the smaller orange hexadecagon. First 

the parts between the square and the hexadecagon are folded (see the red arrows). Then the four 

corners of the square are folded, which results in an octagon (as indicated by the green arrows). 

Finally eight corners of the octagon are folded (in accordance with the purple arrows), so that 

the smaller hexadecagon is obtained. In order to define the functions hj, the latter is rotated first 

around the origin with angle θ=π/16, and next scaled so that it coincides with A. 

 

 

θ 
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Figure 8: Image obtained by iteration of the origami process in Figure 7 

 

 

Discussion 

 
Iterated function systems are classically used with contracting functions. I have illustrated that expanding 

functions can yield fine results as well. One condition is that the domain on which functions act is divided 

carefully into parts. I gave two illustrations of how this can be achieved. The first one defines the parts by 

an iterated rotation method, the second one uses origami. There is little doubt that other partitions can be 

found which work equally well from an aesthetic point of view. But the latter application has the 

advantage of relating origami with fractal techniques, which is a domain in which many possibilities 

remain to be explored. 
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