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Abstract
Visualizations of hierarchical data usually focus on conveying structure. However, with really large hierarchies,
layouts tend to become overcrowded, making it difficult to see details about specific nodes. In contrast, ShamsehTrees
focus on layouts centered on a node of interest, provide interactive nested layouts that were inspired by artistic and
natural floral patterns, and make use of the natural symmetries in phyllotactic patterns. Instead of emphasizing
overall tree structure, these layouts are created to make the most space available for the node of interest. The basic
layout is comprised of nested circles that are centered on the node of interest. After selecting a new node of interest,
the resizing and repositioning of nodes is animated as they transition to the new layout.

Figure 1: Left: ShamsehTree, symmetric representation of the hierarchical context of the node of interest.
Right: Traditional design of Shamseh, a circular shaped Persian Floral Pattern.

1 Introduction

Many types of data in science, engineering and social sciences can be characterized as hierarchical. This
hierarchical or tree structured data can be represented in a variety of layouts, which are usually designed to
emphasize the structure and to show the relationships between parent, child, and sibling nodes. Hierarchi-
cally structured data occur sufficiently frequently that tree visualization continues to be an active research
topic. However, as the data being represented becomes huge the resulting tree layouts can easily become too
dense to be readable. While many tree visualizations exist (for surveys see [1, 5]) increasingly massive data
sets, expanding computational power and still relatively limited display space makes this a topic of ongoing
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interest. The problem of visualizing tree layouts can be more challenging when it comes to representing
huge trees in a clear and aesthetically pleasing layout.

In extremely large trees, representing overall structure can make access to and discovery of individual
nodes difficult due to limitation of available space. To address this, the ShamsehTree layouts presented in
this paper emphasize a node of interest (NOI) by making the most space available for the chosen node and
by displaying the hierarchical structure of the tree around the NOI.

Our node focused layouts are based on inspiration from Persian floral patterns and spiral arrangement of
phyllotactic patterns. In Persian floral patterns plant elements have been symmetrically arranged to form a
beautiful and complex concentric circular pattern (Figure 1) [3]. We also make use of the natural symmetries
and spiral arrangements of phyllotactic patterns [6, 11] to develop concentric, node-focused layouts (Figure
1).

Symmetry can be an important factor for recognizing elements within an image [13]. Symmetrically ar-
ranged elements can create a strong holistic impression and may be a useful feature for grouping individual
elements with the same properties. In general, symmetry is a pervasive phenomenon in both natural and con-
structed environments. It has long been recognized as playing an integral role in geometry and architecture
[13]. Symmetry is an important factor for harmony, balance, and proportion used in nature, art, mathematics
and computational sciences [7]. A symmetric representation of information is usually more aesthetically
appealing, and aesthetically appealing objects have been shown to better engage and motivate viewers [7].
Symmetry can be simple when the elements of an image are repeated by translation, rotation and reflection
(translational symmetry) or can be more complex and dynamic when scaled repetition is used (dilational
symmetry) [3]. In dilational symmetries, suitable scale factors and appropriate arrangements of the copies
(e.g. spirals) can create an aesthetically appealing and proportionally pleasing final composition. Some use
of symmetry has been explored in human perception [10] and graph layout [2, 8]. However, the full potential
and power of symmetry, most notably dilational, in terms of layout and interactive exploration methods,
has not yet been fully explored. The potential for a positive role of dilational symmetry in information
visualization is partially evidenced by PhylloTrees [9] and Botanical trees [8].

Since ShamsehTrees are intended for large real world trees, the images used for illustration in this paper
are ShamsehTree views of WordNet [4]. WordNet is a human-constructed lexical database in frequent use
by many Natural Language Processing (NLP) techniques. WordNet has a hierarchical structure that has been
created based on the IS-A relationship. For example, a cat IS-A mammal and a mammal IS-A animal. The
WordNet is a collection of English noun synsets (groups of synonyms) rooted at the word entity using the
IS-A relation (called hyponomy). The hierarchy consists of 73,736 synsets with a maximum depth of 14.
The data identifies a synset by the first word in the set, creating a hierarchy of words related by IS-A. Figure
2 shows a ShamsehTree view with the WordNet with labels in place. For the other figures in the paper, we
have not displayed the labels as the discussion is about the structure of visualization of ShamsehTrees not
about WordNet.

2 Representation

Our nested ShamsehTrees use a circle as the basic shape for their nodes. Although, our method can work for
any convex shape, the circle has a simple but rich geometry and is frequently found in nature and art. Also,
it has been suggested that circles make it easier to see groupings and structural relationships [12]. We use
a nested layout to visualize parent/child relationships without direct use of lines or curves. Wang et al. [12]
also describe a method for a nested tree layout where tree nodes at different levels are displayed by using 2D
nested circles with variable sizes. Unlike the available nested layouts such as those presented by Wang et al.
[12], in our representation we use nodes with the same size in each level which creates more symmetrical
patterns (Figure 1). The inspiration for the underlying layouts comes from the symmetric structure of Persian
Floral Patterns [3] especially the circular shaped known as Shamseh which means sun in Arabic language
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Figure 2: The ShamsehTree view of WordNet with the NOI set at hose. The five children of the NOI are all a
type of hose and a hose is a type of artifact.

(Figure 1) and provides the name for our layout.
In our representation, if node A is inside node B then A is a child of B. ShamsehTree layout shows a

subset of the tree. Figure 3 illustrates this in comparison with a more traditional, node-link, tree layout.
The red circle in the node-link tree layout on the left shows the NOI (node of interest). This same node
is also outlined in red in the ShamsehTree (right). In the node-link tree, children of the NOI are shown in
blue lines. In the ShamsehTree the children of the NOI are nested inside the NOI, and contain the NOI’s
children’s children. The ancestors of the NOI are shown in green lines in the node-link tree, and are shown
as progressively larger circles encasing the NOI in the ShamsehTree. In addition, two levels of children
are shown for each ancestor of the NOI. In ShamsehTrees the NOI is central and nested inside all of its
parents and contains two levels of its children. ShamsehTrees only display two levels of children in the NOI,
however, if further levels of children exist, they can be reached interactively. Our approach is an abstraction
that provides both ancestor and descendant context for an NOI. This dual context abstraction enables quick
exploration around NOI and ready access to the rest of the tree via the root’s children while keeping the
entire tree in a traceable and interactive size.

Nested layouts may address edge congestion, however, new challenges arise. For instance, one issue
is how to arrange sub-nodes. If A1,A2, . . . ,An are all children of B, then all these nodes must be inside
of B but their arrangement needs to be organized, if possible, to enhance the clarity of visualization. Our
layout is based on a node of interest (NOI), which is drawn as a circle and is nested within concentric circles
that represent its ancestors. The outer most circle is the root of the tree. In the initial layout the node of
interest would be the root. If the NOI has children, they are laid out inside the NOI using phyllotactic
patterns. If the NOI has siblings, they are evenly spaced in the NOI’s parent’s ring. This is repeated until
the outer ring is the tree’s root. The NOI and any drawn ancestor node will display its children, and its
children’s children depending on how much space it has. For the NOI this creates both an ancestrally-
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Figure 3: Comparing the circular node focused tree layout with a traditional tree layout.

based and a descendant-based context. For the layout of a node’s children, we use spiral patterns based on
basic phyllotactic arrangements. Suppose that (φn,rn) is the polar coordinate of the center of child n for
n = 1,2, . . . ,nmax where nmax is the number of children. We distribute the centers on spirals from inside out.
Therefore, both φ and r are increasing functions in term of n. In our implementation, we use:

φn = nα , rn = c(nmax)
√

n

n = 1,2, . . . ,nmax

where the constant α controls the angular increment between successive nodes and c(n) is used to control
the radius of the spiral. Figure 4 shows how changing α affects the layout.

Figure 4: Change of α creates different patterns. From left to right: α = 10,α = 130,α = 100.

The function c(nmax) controls the increment factor for the radius. To keep the symmetry of layout,
maintaining all siblings as the same size, we reduce the effect of c(nmax) when there are more children. In
our implementation we have used c(n) = 1√

nmax
to normalize rn in the range between 0 and 1. Therefore,

changing nmax results in different layouts as demonstrated in Figure 5.
When a node A is selected that node becomes the NOI and moves dynamically to the center of the layout

and its size is appropriately increased. Following this action, the NOI’s children are recursively resized and
re-positioned. Since the NOI’s siblings are to be arranged within the NOIs parent node B, the size of the
NOI must be slightly smaller than its parent to leave enough space for the siblings. We uniformly space the
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Figure 5: The effect of n in the layout. The three nodes shown on the right have from top to bottom 156, 50,
and 11 children, all of which have been laid out in the same size parent. For all three nodes α is the same.
Note how in the node with 11 children only the inner part of the spiral is used.

siblings of A in the space around A and inside B as demonstrated in Figure 5 (left side). The NOI and its
siblings are displayed with the same color. To describe these operations more precisely, let (xA,yA) be the
center of A (NOI) and rA be its radius. The new position of the NOI can be obtained by:

(xA,yA) = (xB,yB).

And the size of the NOI is increased by:

rA = d rB, 0≤ d ≤ 1

where d is a constant that controls how much smaller the NOI is than its parent. As illustrated in Figure 6,
larger values for d (left) provide more space for the NOI and smaller values for d (right) provide more space
for ancestors and their children. However, for really deep trees large values of d do not provide enough space
for the NOI. In addition, extremely small or large values for d do not produce proportional and aesthetically
appealing layouts. Setting d to the values near to the golden ratio (the right layout in Figure 6) seems to
make better layouts.

During the transition from one NOI to another, the NOI’s siblings and their children are dynamically
repositioned and resized as shown in the Figure 7. Assume S1,S2, . . . ,Sk are siblings of NOI. As a simple
solution, we distribute these nodes in a circle uniformly around the NOI and within their parent. More
precisely, we use the new NOI’s parent’s center (xB,yB) as the new NOI center and to obtain the position
of the sibling’s centers we calculate a sibling-base circle upon which all siblings will lie. The radius of the
sibling-base circle is

ρ =
1
2
(rA + rB)

where rA is the NOI radius and rB) is the NOI’s parent’s radius. For each sibling, we use a circle whose
center is on the sibling-base circle and whose radius will keep the sibling inside the parent and outside the
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Figure 6: Left: larger values for d gives more room for an NOI deeply nested in the tree; Right: smaller
amounts for d provides more space for the ancestors and their children.

NOI. To do this, we set the sibling-radius as

rsk = w(rB− rA)

where w is a contraction factor sufficient to keep the edges of the sibling’s circle just clear of both the parent
and NOI circles (see Figure 7).

Figure 7: Left: A node is selected node to be the next NOI; Left, middle: the new NOI’s children encircle the
new NOI; right, middle: the NOI starts to expand; Right: the new NOI and its siblings in their new positions.
To make a smooth transition for animation position and radius are functions of time

When an NOI is selected, the sibling nodes of the selected node are clustered around the new NOI. These
new positions are in a flower-petal arrangement around the NOI and as the NOI expands, the sibling nodes
spread apart similar to flower petals Figure 7. Animation plays an integral role in our interactive system. All
of the repositioning and resizing is done dynamically as demonstrated in Figure 7. Starting from the left, the
first image shows that the fourteenth of twenty-two siblings has been selected. The second and third images
show the transition in progress. The newly selected NOI is expanding, moving towards the center, and its 21
siblings have arranged themselves around its edge. In the fourth (right-hand) image the new NOI is in place,
centered in its ancestors and ringed by its siblings. To effect this transition, we change the center position
(xo,yo) and the radius ro of node S to a new position (x f ,y f ) and final size r f in a continuous manner. To
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make a smooth transition for animation, we make position and radius functions of time t

(xt ,yt) = (1− t)(xo,yo)+ t (x f ,y f )
rt = (1− t)ro + t r f

0≤ t ≤ 1

Color shades are used to show the hierarchy. The selected node can be seen as a circle with its children
inside it and all of its parents with their hierarchy relationships are shown as circular layers with different
shades of blue. Each circle in the hierarchy includes its children which are evenly and symmetrically posi-
tioned around the circle. The presentation shows the NOI with its children and its ancestors and their children
through to the root of the tree.

Figure 8: Left: Comparing nodes. Right: Searching for a node with its label.

3 Interactive Exploration

It is also possible to compare two different sibling nodes in our interactive system. The two nodes that are
being compared are drawn the same size and are positioned inside their parent’s node. All of their siblings
are positioned around them inside their parent’s node (Figure 8). While nodes can be dynamically selected
node search is also supported. A search for a specific node can be conducted by entering the label of the
node. The node related to the label will be highlighted using a contrasting color (Figure 8). The relation
between the selected node and the root still stays visible. The tree can also be edited by adding and removing
the nodes. During exploration, the tree can be modified by interactively adding and removing nodes in any
desired level.

4 Conclusion and Future Work

In this paper, we introduced an interactive tree layout that makes some use of dilational symmetry and was
inspired by natural and artistic floral patterns. This tree layout provides a node-focused approach that centers
the node of interest and sets it in its symmetrically drawn context. Nodes of interest can be interactively
changed and the transitions are animated. In a given layout the subset of the tree that contains the node of
interest’s ancestors and all of its immediate children. The whole tree can be explored interactively. Further
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investigations into the type of interactivity provided and the effectiveness of this type of contextual layout
are underway.
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