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Abstract 

 
This paper represents a finite group with 32 elements as a group of transformations of a compact surface of 

genus 5. In particular, we start with a designated pair of regions of this surface, and each region is labeled 

with the group element, which transforms the designated region into it. This gives a portrait of that finite 

group. These surfaces and the regions corresponding to the group elements are shown in this paper. William 

Burnside first gave a simple example of such a portrait in his 1911 book, “Theory of Groups of Finite Order”. 

This paper is the third paper in a series which models groups as groups of transformations on a compact 

surface in the style of William Burnside. 

 

Introduction and Historical Perspective 

 
A group is a set and an associative binary operation which contains an identity such that each 

element has an inverse element in the group. Therefore, a group is an abstract object. Groups were 

originally thought of as permutations of some other mathematical structure, such as a set of points. This 

permutation group idea comes very naturally from the set of symmetries of physical objects. Thus the 

symmetries of an equilateral triangle are a group with six elements. It follows that groups can be both 

abstract objects and real physical motions of a symmetric object. 

A group can also be thought of as a set of transformations of a "plane" into itself that is closed 

under composition. Some groups of transformations 

can be realized on the Euclidean plane and these give 

rise to the tessellations of the plane. Many groups need 

to be realized on the hyperbolic plane and give rise to 

tessellations of it. A finite group is a finite set of 

transformations which is closed under composition. If a 

finite group were represented on an infinite plane, then 

the fundamental region would have to be infinite. 

Therefore, a finite group is represented as a set of 

transformations of a compact two dimensional surface, 

such as the sphere or the torus. These surfaces must 

become more complex in order to contain the portraits 

of some groups. 

This paper is part of a series of papers on how 

to draw a portrait of a finite group, in the style of 

Burnside [1]. Burnside started with circles in the plane 

and used inversion in the circle as the transformation. 

The relationship between circles determines the  group 

Figure 1, Portrait of a Free Group               generated by these transformations. When we look at 

the regions this generates inside of a circle we get Figure 1. Burnside [1, p. 379] constructed a free group 

on 2 generators, F2, using two mutually tangent circles and the line tangent to them (a circle centered at 
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infinity). We only need to picture the part of each region inside the circle through the three points of 

tangency. Like Burnside, the initial region is the "triangle" labeled E and its corresponding shaded region. 

Each “triangle” is bounded by arcs colored red, blue or black in our sketch. Inversion in any single arc 

will take a shaded region into a non-shaded region and vice- versa. Each region can be labeled by the 

transformation needed to get from E to that region. Since we are interested in orientation-preserving 

transformations, each group action is represented by the composite of two such inversions. Inversion 

through first a red arc and then a blue arc corresponds to multiplying on the left by the generator S. 

Multiplying on the left by the generator T corresponds to inversion through black and then red. 

Multiplying on the left by ST corresponds to inversion through black and then blue. If we considered 

inversion through a black arc first and then a blue arc as the inverse of a single generator, R, then we 

could interpret this picture as a portrait of a group with presentation 1|,,2 RSTTSRT . This 

construction fills up a unit disk with black and white regions and the transformations are given in the 

same way. We have used Geometer’s SketchPad [4] to reconstruct this portrait of a free group on two  

Figure 2 - The Fundamental Region for SG(32,2) 

 
generators (Figure 1), similar to a figure in Burnside [1, p. 380]. 

Now suppose that we have a finite group, G, generated by 2 generators. The group G is the image 

of F2 by a normal subgroup N. Specifically, two strings of generators represent the same element of the 
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group if the product of one string and the inverse of the other string is in the subgroup N. One example of 

this is that a rotation of 120º clockwise is the same as two rotations of 120º counterclockwise. After 

associating an element of F2 to each region, the final step is to identify all regions with labels from the 

subgroup N. After this identification, we have the finite group G. However the circle in Figure 1 still has 

an infinite number of regions labeled with elements from the presentation 2T . This circle can be thought 

of as the Poincare disk model of hyperbolic space. At this point, we choose a connected set of regions 

which contains a single region for each group element and whose label corresponds to that group element. 

This set of regions is called the Fundamental Region for the finite group. Any region outside of the 

fundamental region is equivalent to some region within the fundamental region. Therefore, the compact 

two dimensional surface is derived by folding the fundamental region in certain ways. This is the same 

idea as constructing a torus by taking a rectangle and identifying the top and bottom as connecting to each 

other and the two sides as connecting. 

In the diagram in Figure 1, each element has infinite order and the curvilinear triangles get 

smaller and smaller as they approach the boundary of the circle. This means that the connected region in 

Figure 1 would have a ragged boundary with parts of the boundary intersecting each point. This can be 

fixed by picturing a different tiling of the hyperbolic plane or by drawing a polygonal region with the 

same relationship between the triangles. The second approach has the advantage that the triangles remain 

easily visible as they get near the 

boundary of the polygonal region 

and this portrait is pictured in 

Figure 2. The portraits developed 

are topologically equivalent to the 

model that we want, but even the 

areas of the regions are changed. 

Compact surfaces are 

classified topologically by genus 

and orientability. Every compact 

orientable surface with genus g is 

topologically equivalent to a 

sphere with g handles. Very 

roughly, the genus is the number 

of "donut" holes that a surface has.  

This is why a donut and a coffee 

cup are topologically equivalent. 

Thus, every compact surface of 

genus g may be constructed in 

many different, but topologically 

equivalent ways. We will pick a 

symmetric way of representing the 

surface and use it. This surface          Figure 3 - Connectivity of the Fundamental Region 

may be drawn and colored with each face composed of one white and one black region. These faces 

represent a finite group of transformations, which act on the surface in the style of Burnside [1]. The 

choice of surface is made arbitrarily with the correct orientability and genus. 

 There have been several Bridges papers which pictured regular maps on surfaces of genus 3 to 7 

(for example [3] and [7]) and their associated tilings and the related topic of portraits of groups using 

techniques in this paper ([9] and [10]). The automorphism groups of these tilings are the groups PSL(2,7) 

(in [3]) and S5 (in [7]). The portraits in [9] are of the dicyclic group of order 12 and the group of order 16 

with notation < 2, 2 | 2> (see [2, p. 134]) acting as orientation-preserving transformations and the group 

P48 = SG(48, 33) pictured as a group where some transformations are orientation-reversing. 
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Group Portraits 
 

Let G be a finite group. There is a set of orientable surfaces on which G can be represented as a 

group of transformations. One of these surfaces has the smallest possible topological genus of all surfaces 

in this set. The genus of this surface is defined to be the symmetric genus of the group. If the group can 

only be represented by transformations that preserve the orientation of the surface, then the genus of the 

surface of smallest genus is called the strong symmetric genus of the group. 

The group that we will be considering is a group of order 32 with symmetric genus 5 (see [6]). 

The genus action is given as a quotient of the triangle group 1)(|,)4,4,4( 444 STTSTS  

and these transformations preserve the orientation of the surface, its strong symmetric genus is also 5. 

This group is SmallGroup(32,2) in the Magma Library of groups (see [5]). We denoted this group by 

)2,32(SG . It has a presentation 1]],[,[]],[,[]),([)(|, 2444 TSTTSSTSSTTSTS  

as the image of )4,4,4( . This presentation is extremely symmetrical. We know that this group can be 

drawn as a group of transformations of a compact surface with five "donut holes" and that it cannot be  

 
Figure 4 - The model of SG(32,2) on a surface of genus 5 

 

drawn on a compact surface with any fewer than five "donut holes". The polygonal region for the group 

)2,32(SG  is given in Figure 2. 

Zimmerman

262



In Figure 3, each of the thirty two faces is labeled with a number which corresponds to a group 

element. Remember that each “face” is a paired white and black region separated by a blue curve. Each 

region on the border of the plane figure connects to another region on the border of the plane figure. 

Theoretically, this tells us how to fold the fundamental region to get a compact surface with genus five. 

The faces are split into white and black parts simply because this is the way that Burnside constructed his 

original diagram. This portrait consists of 32 white and 32 black triangles. Each of the 64 regions is 

bounded by 3 edges and each edge bounds 2 regions. So a simple combinatorial argument gives that there 

are 96 edges. The faces that meet at a vertex are labeled in such a way that each face is related to the 

adjoining face by multiplication on the left by either S, T, ST or its inverse. For example, two regions M 

and N are both incident to the same S vertex if and only if MSN k
 for some k. Therefore, each vertex 

could be classified as an S-vertex, a T-vertex or an ST-vertex depending on the labeling of its bounding 

regions. Since S, T and ST have order 4, each S, T or ST vertex has degree 8. This gives 24 vertices. 

Therefore, the Euler characteristic is  = V - E + F = –8. 

Since  = 2 - 2g, where g is the genus of the surface, this 

portrait is drawn on a surface of genus five. Therefore, the 

portrait in Figure 4 gives the genus action for this group 

(see [6]).  

Finally, we construct a model of the surface and of 

the transformations in this group. This model is in Figure 4. 

Notice that this is a model where each transformation is 

represented as a word in the generators of a particular 

presentation. Therefore, one could say that this is a model 

of the particular presentation of this group. I would point 

out that this presentation was chosen as the one which can 

be drawn on a surface of smallest genus. In this particular 

case, the Cayley graph of this presentation is the dual of 

this model where each region consists of a paired white and 

black region. However, in general Cayley graphs can be 

embedded in surfaces of smaller genus than can be done 

with this technique (see [8]). 

 

Figure 5 - Local information about a point             Construction of the Model 
 

Finding a blueprint for the model is the hardest part of this process. A graph is constructed from 

the data in figure 3. This graph is a regular map, but unfortunately this fact is not useful in finding the 

model. The basic idea is to construct a model of a genus five surface and try to fit the points of the graph 

on the model in the proper way. The first step is to get the information about the points and faces that are 

adjacent to a point. An example of this is shown in Figure 5 for the point labeled A. Diagrams like this 

one are constructed for each point in the graph. Notice that although Figures 2 and 3 distort the angles, in 

the final model the triangular regions which have point A as a vertex, all have vertex angle 45º. In Figure 

5, the points H, A and D are on a straight line and in the model this is a black curve. We can extend this 

"straight line" to a closed curve on the model. These curves are referred to as "straight line curves". 

 There are 24 straight line curves in the model, eight each of black, red and blue curves. Each 

straight line curve contains four vertices. Each vertex is on four straight line curves, two of one color and 

two of another color. The two straight line curves of the same color which intersect in a point are at right 

angles. If you start at any point in the model and pick a color incident to that point, the two straight line 

curves intersect in exactly two steps. For example, the two black straight line curves incident to point A 

are H  A  D  L and F  A  B  L and they intersect again at point L. The two red straight line 

curves incident to point A are G  A  C  P and  E  A  I  P and they intersect again at point P. 

 Two white regions M and N both bound a straight line curve of the same color if and only if 
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MSN 2
. The same is true for T and ST vertices. Thus, a straight line curve contains directed edges 

that are two steps apart if and only if these edges are incident to the white regions F  and Fyx 22
 where

},,{, STTSyx  are different generators. Two steps preserve the direction of the directed edge along the 

straight line curve. The elements
2S , 

2T and 
2)(ST  are in the center of )2,32(SG . So if MzN k

 for

},,{ STTSz , then both images Myx 22
 and Nyx 22

 have the same initial vertex because they satisfy 

the equation MyxzMzyxNyx kk 222222
. This is why the straight line curves above always 

intersect in 2 steps. It is also clear, since these elements have order 2, that four steps gets you back to the 

initial point. 

 There are 24 points and since there are 5 holes and the outer rim, each one of these has a straight 

line curve on its rim. Now we find a way to connect these points. There are in fact multiple ways to do 

this, but one constraint used is that the front and back side of the models must be symmetrical. This gives 

a pleasing symmetry to the whole construction and makes it easier to see how it fits together. 

 Figure 6 - Blueprint of the Model    Figure 7 - Model with graph on it. 
 

 Finally, the front face of the blueprint for the model is included in Figure 6, and the actual model 

with the graph drawn on it is in Figure 7. Note that even though the graph was embedded on the model 

first, it is easily checked that the faces are properly positioned. 
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