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Abstract

We describe how to construct map-colored mosaics. Wheneddvom afar, they resemble familiar images. When
viewed from up close, they look like properly colored maps.

1 Introduction

After a long day of coloring maps, a cartographer might viegvid of squares (Figure 1(a)) as an uncolored
map. To color this map, the cartographer would follow thelitranal map-coloring protocol and assign
colors to countries in such a way that no two countries (®p)athat share a border (edge) receive the
same color. The Four Color Theorem states that, at leastkipldne, four colors suffice; never will the
cartographer need more. When coloring a grid of squaresneeés only two colors, as in Figure 1(b). But
with four (or more) colors, much more interesting and adithlly pleasing results can be achieved. For
example, with four colors a grid of squares might take on tkenkss of the Mona Lisa’s right eye, as in
Figure 1(c).

Figure 1: (a) an uncolored map, (b) colored with two shades of grgydtored with four shades of gray

In this paper, we describe how to produce pictures like FEduc). We call thermap-colored mosaics
When viewed from afar, they resemble familiar images. Whewed from up close, they look like properly
colored maps. In a properly colored map, no two countries share a border can share a color. In a
map-colored mosaic, no two tiles that share an edge can alearer.

2 TheMap-Colored Mosaic Design Problem

We begin with a user-supplied target image, a map (a tilinh@plane with copies of one or more tiles), and
a small set of colors (usually between four and eight). We dissume that our target image is in grayscale,
our map is a grid of squares, and all of our colors are diffesbades of gray.
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Furthermore, we assume that our target image consistsrofvs andn columns of pixels and that our
map is a grid that consists of rows andn columns of squares. We denote the brightness of theiyow
column j pixel—pixel (i, j)—by B ; € [0,1], where 0 stands for completely black, 1 stands for completel
white, and intermediate values stand for intermediate eshafigray.

Finally, we assume that we only hayecolors. (We refer to them as colors even though they are just
shades of gray.) We denote the brightness of cotf 1,..., x } by be, using the same 0-to-1, black-to-white
scale we use for the pixel brightnesses.

Our goal is to construct am x n mosaic that (1) when viewed from afar, resembles the targagé as
much as possible, and (2) when viewed from up close, looksdigroperly-colored map. To attain this goal,
we use integer programming formulations as in [2-4].

3 A Simplelnteger Programming Formulation

For each squarg, j) and each coloc, we must decide if we will paint square, j) with color c. We model
this with binary variables, setting ; c equal to 1 if we do indeed paint squdiej) with color ¢, and setting
Xi j,c to O if we don't. We need a total gfmn such variables.

Given that we want our mosaic to resemble our target imageua$ ias possible, we need to be able to
measure our mosaic’s “goodness of fit” with our target imaQer strategy is to compute a separate error
term for each square of the mosaic and then add them all upe ffaint squaréi, j) with color c, then it
will have brightness., whereas pixeli, j) has brightnesg; ;. So one possible error term for squarg) is

X
> |be—BiilXijc
c=1
and another is y
S (be—Bij)* X jc-
c=1

We use the first one, which gives us the goodness-of-fit measur

m n X
ZZ Zl‘bc—Bi,j‘Xi.j.c
i=1j=1 c=

for our model’s objective function.

To force ourselves to paint squdiej) with precisely one coloe, we incorporate the following equation

into our model: X

Z Xijc= 1.
c=1
We need a total afnn such equations.
To force ourselves to paint squargsj) and(i, j + 1) with different colors, we introduce, for each color
ce{1,...,x}, the inequality
XijctXijr1ec <1

This inequality prohibits us from painting both squdrej) and its right neighbor, squar@, j + 1), with
colorc. We need a total gfm(n— 1) such inequalities.

Similarly, to force ourselves to paint squat@sj) and(i + 1, j) with different colors, we introduce, for
each colorc € {1,..., x}, the inequality

Xijct+Xitryjc <1
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This inequality prevents us from painting both squéitg) and its lower neighbor, squafe+ 1, j), with
colorc. We need a total gf (m— 1)n such inequalities.
We end up with the following integer programming formulatio

m n X
minimize z:ZZZ|bc—Bi,j|K,j,c
i=1j=1¢=
X

subject to z Xijec=1 foreach I<i<m,1<j<n
c=1
XijctXjre <1 foreachI<i<m1<j<n-1,1<c<y
XijctXi+tjec<1 foreachI<i<m-1,1<j<n 1<c<y
Xijc€{0,1} foreach1<i<m, 1< j<n 1<c<y.

This formulation is simple and fast but yields low quality saics for small values gf. Each of the mosaics
displayed in Figure 2 was produced in a fraction of a secon@BYEX [8] on a 3.2 GHz Pentium IV PC.

Figure 2: The Mona Lisa’s Eyes, simple formulatiom& 18,n=54) (a)x =4, (b)x =8
The four-color mosaic (Figure 2(a)) is recognizable, buider The eight-color mosaic (Figure 2(b))

achieves a better likeness. We encourage the reader to w#gwob these mosaics (and all of the others
displayed in this paper) from two vantage points: from ugseland from afar (e.g., from across the room).
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4 An Alternate (Block) Formulation

The problem with the simple integer programming formulati® that it measures the mosaic’s goodness of
fit by comparing each individual square with its correspogdpixel. Recent research on matrix rounding
and digital halftoning [1,5] suggests another approacmparing each two-by-two block of squares with its
corresponding two-by-two block of pixels.

Consider them x n matrix M whose rowt, column{ entry gives the number of the color in the row-
column+ position of our mosaic. Le® equal the set of all 2 2 matrices thatould bea 2x 2 block of M.
Note thatQ = (g; g;g) € 2 if and only if each entry of belongs to{1,..., x} and no two adjacent entries

are equal (in other wordsj 1 # 012, 011 # Q21, Q12 7 Op2, anddy 7# Cp2).

In this formulation, for each ¥ i < m, each 1< j < n, and eaclQ = (gi 3;3) € 2, we sety; j o equal

to 1 if we place the upper-left corner of blo€kin square(i, j), painting squaréi, j) with color g1, square
(i, ] + 1) with color g12, square(i + 1, j) with color gz1, and squargi + 1, j + 1) with color gzz. So, in this
formulation, setting a variable equal to 1 paints an entire-by-two block of squares. It turns out that we
need a total ofx (x — 1)2+ x(x — 1)(x — 2)2)(m— 1)(n— 1) such variables.

Here is our alternate (block) formulation:

m-1n-1
min z= Zl Z Z ‘(b%l + By, + by, + szz) - (BiJ +Bij+1+ B +Bi«,j+1)‘ ¥iiQ )
i=1 ]=1 Qe2
s.t. Z Vijo = 1 foreachlI<i<m-1,1<j<n-1 2
Qe2
> Yie = 3 Wjar foreachlci<m-1,1<j<n-2, 3)
G120 G ot ey and 1<uv< x:U#v
Z Viio = Yitrjr foreach1<i<m-2,1<j<n-1, 4)
P, gy and 1<uv< x:u#v
¥iio € {0, 1} foreach1<i<m-1,1<j<n-1,Q€c 2.

The objective function, (1), measures goodness of fit by @imng the total brightness of each two-by-
two block of squareshg,, + bg,, + bg,, + bg,,) With the total brightness of the corresponding two-by-two
block of pixels B j + Bi,j+1+ Bi+1,j + Bi,j+1)- The type (2) equations make sure that we paint each ang ever
two-by-two block of squares, and the type (3) and (4) eguatimake sure that we paint the two-by-two
blocks in such a way that they overlap with each other botizbptally and vertically.

i+

i+l j+2
[ Ou1 | Q12

[ Quz | U | raz
i+1| u \%

i+1 | go1 \% 22

i+2 | 21 | r22

Figure 3: (a) horizontal overlapping, (b) vertical overlapping.

When thinking about the type (3) equations it helps to carskigure 3(a), and when thinking about
the type (4) equations, it helps to consider Figure 3(b). [€ftehand side of a type (3) equation counts how

many blocksQ of the form (gi v) we place in squaréi, j). The right-hand side counts how many blocks

R of the form (|, 2) we place in squargi, j +1). Note that each side is either 0 or 1 (due to the type (2)
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eqguations and the fact that the variables are binary.) Bingahe left-hand and right-hand sides equal, we
force the blocks to overlap horizontally.

The block formulation does have its drawbacks. It is celydarder to understand. It has many more
variables and constraints than the simple formulation kenorder ofy® times the number of variables, and
on the order ofy times the number of constraints). And it is slow. It is so éathat to solve it, we had to
divide the problem into sections, creating a dozen colunfitiseomosaic at a time. Still, the advantage of the
block formulation is that it produces high quality mosaigerefor small values of. The four-color mosaic
displayed in Figure 4 (which required about a minute for CRLE much nicer than the one in Figure 2(a).
In fact, we strongly prefer it to the eight-color mosaic disged in Figure 2(b). It uses half the number of
colors, yet when viewed from a distance, it still achieveetid likeness of the target image.

Figure 4: The Mona Lisa’s Eyes, block formulatiom(= 18,n= 54, x = 4)

5 Modifying the Mosaic

Once we have created a map-colored mosaic that pleases ganweodify it by replacing its square tiles
with other tiles that behave like squares. By doing this, W&im images that are reminiscent of Escher-like
tessellations [6,10] or Huff-like parquet deformations9[Avhen viewed from up close, yet still look like
familiar images when viewed from a distance. See Figuresi®an
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Figure5: The Mona Lisa’s Eyes, block formulation, propeller tiles-£ 18,n =54, x = 4)
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Figure 6: The Mona Lisa’s Eyes, block formulation, parquet defoiora{m= 18,n= 54, x = 4)
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6 Other Tilings

One can adapt both the simple and block formulations forsgprare tilings based on hexagons, equilateral
triangles, rhombuses, etc., but it is usually much easiadapt the simple formulation. Figure 7 displays a
six-color map-colored mosaic, based on a hexagonal titimagf, we created by solving a hexagonal version
of the block formulation. Figures 8-10 display what happehsn we replace the hexagons with pinwheels,
a Mongolian three-pronged arrow design, and Escher-l#aedis.

Figure 7: The Mona Lisa’s Eyes, block formulation, hexagogs= 6)

7 Color

Itis also possible to adapt the formulations so that theywagth different color palettes. The main difficulty
is that the user needs to specify the color palette in advahgalette that works well for one target image
may fail spectacularly for another. See Figure 11 for a ss&foéexample.
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Figure 9: The Mona Lisa’s Eyes, block formulation, arrows £ 6)
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Figure 10: The Mona Lisa’s Eyes, block formulation, lizards £ 6)

Figure 11: Girl With A Pearl Earring, simple formulation, parquet dehation = 25)
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