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Abstract 
 

In this paper, we discuss a method of arriving at colored three-dimensional uniform honeycombs. In particular, we 

present the construction of perfect and semi-perfect colorings of the truncated and bitruncated cubic honeycombs. If 

G is the symmetry group of an uncolored honeycomb, a coloring of the honeycomb is perfect if the group H 

consisting of elements that permute the colors of the given coloring is G. If H is such that [G : H] = 2, we say that 

the coloring of the honeycomb is semi-perfect. 

 

 

Background 

 
In [7, 9, 12], a general framework has been presented for coloring planar patterns. Focus was given to the 

construction of perfect colorings of semi-regular tilings on the hyperbolic plane. In this work, we will 

extend the method of coloring two dimensional patterns to obtain colorings of three dimensional uniform 

honeycombs. There is limited literature on colorings of three-dimensional honeycombs. We see studies on 

colorings of polyhedra; for instance, in [17], a method of coloring shown is by cutting the polyhedra and 

laying it flat to produce a pattern on a two-dimensional plane. In this case, only the faces of the polyhedra 

are colored. In [6], enumeration problems on colored patterns on polyhedra are discussed and solutions 

are obtained by applying Burnside's counting theorem. The works [14, 19] highlight edge-colorings of the 

platonic solids. There are studies on colorings of three-dimensional space using an algorithm that makes 

use of the group structure of the Picard group [1, 2, 21]. Cross sections of the colored three-dimensional 

patterns were used to produce colored two-dimensional Euclidean patterns. 

 

We find the occurrence of colored honeycombs (space filled with polyhedra) in different places; for 

instance, as representations of geometric constructions, or as models of chemical structures. Shown in 

Figures 3(a), 3(b) and 4(b) are illustrations of colored honeycombs. Interestingly, the colorings shown are 

representations of three different uniform constructions of the bitruncated cubic honeycomb, a 

honeycomb consisting of truncated octahedra. For example, the coloring with two colors in Figure 3(a) 

represents two types of truncated octahedra: half are obtained from the original cells of the cubic 

honeycomb and the other half are centered on vertices of the original honeycomb. In Figure 4(b), this 

colored honeycomb is referred to as the cantitruncated alternate cubic – there are 3 types of truncated 

octahedra in 2:1:1 ratios. In Figure 3(b) there are 4 types of octahedra in 1:1:1:1 ratios; each type is 

represented by a different color. In [18], a bitruncated honeycomb is used to represent a spongy graphite 

network of carbon atoms in 3-dimensional space. 

 

In this paper, we present the construction of colored honeycombs where an entire cell gets one color. 
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In recent works [8, 16], a method for determining subgroups of three-dimensional symmetry groups 

in spherical, Euclidean or hyperbolic 3-space was discussed. The approach, based on concepts on color 

symmetry theory, allows for the characterization of each subgroup in terms of the symmetries it contains.  

This development is helpful in the construction of colorings of honeycombs especially in hyperbolic 

space, since the subgroup structure of hyperbolic symmetry groups is not widely known. As will be seen 

in this work, the subgroup structure of the symmetry group of a given honeycomb plays a significant role 

in arriving at colorings of the honeycomb. 

 

 

Uniform honeycomb 

 
We start the discussion by defining uniform honeycombs. A polyhedron is called uniform if its faces are 

regular polygons and it satisfies the property that its group of symmetries acts transitively on its vertices. 

A uniform honeycomb is a three dimensional honeycomb with uniform polyhedra as its cells and where 

the symmetry group of the honeycomb acts transitively on its vertices. Uniform honeycombs are also 

called Archimedean honeycombs. 

 

In three-dimensional Euclidean space, twenty-eight such honeycombs exist: the cubic honeycomb 

and seven truncations thereof; the alternated cubic honeycomb and four truncations thereof; ten prismatic 

forms based on the uniform plane tilings (eleven if including the cubic honeycomb); and five 

modifications of some of the mentioned by elongation or gyration [11, 13]. In this paper, we illustrate the 

concept of arriving at colored honeycombs using two examples of uniform honeycombs, the truncated 

and the bitruncated cubic honeycombs, shown in Figures 1(a) and (b) respectively. Both of these 

honeycombs are directly constructed from the only regular honeycomb in three-dimensional Euclidean 

space – the regular space filling of cubes [4]. Interestingly, the centers of the cells of the bitruncated cubic 

honeycomb coincide with the body centered cubic (BCC) lattice. 

 

The symmetry group of both the truncated and bitruncated cubic honeycombs is the group [4, 3, 4] 

generated by four reflections P, Q, R and S satisfying the following relations 

 

P
2
 = Q

2
 = R

2
 = S

2
 = (PQ)

4
 = (QR)

3
 = (RS)

4
 = (PR)

2
 = (PS)

2
 = (QS)

2
 = e . 

 

The planes of reflections P and Q, R and S intersect at an angle of π/4; the planes of reflections Q and R 

intersect at an angle of π/3 and the planes of reflections P and R, P and S, Q and S intersect at an angle of 

π/2. The planes of the reflections P, Q, R and S are shown in Figures 1(a) and (b), respectively, for the 

truncated and bitruncated honeycombs. 

 

 

A method for coloring symmetrical patterns 

 
The following method given in [12], will be applied to arrive at colorings of uniform honeycombs. 

 

Let G denote the symmetry group of the uncolored honeycomb and X the set of cells in the 

honeycomb. If C = {c1, c2, …, cn} is a set of n colors, an onto function f : X → C is called an n-coloring of 

X. To each x ∈ X is assigned a color in C.  The coloring determines a partition P = {f 
-1

(ci ): ci ∈ C} where 

f 
-1

(ci) is the set of elements of X assigned color ci. 
 
Let H be the subgroup of G which consists of symmetries in G that effect a permutation of the colors 

in C. Then h ∈ H if for every c ∈ C, there is a d ∈ C such that h(f 
-1

(c)) = f 
-1

(d). This defines an action of 

H on C where we write hc := d if and only if  h(f 
-1

(c))  = f 
-1

(d). 
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Figure 1: The (a) truncated and (b) bitruncated cubic honeycombs with the  

planes of the reflections P, Q, R and S. 

 

 

Since H acts on the set C of colors of X there exists a homomorphism σ from H to Perm(C) where 

Perm(C) is the group of permutations of C. 

 

Let ci ∈ C and denote by Oi the H-orbit of ci, that is Oi = Hci. Suppose Ji = {h ∈ H : hci = ci} is the 

stabilizer of ci in H. From each H-orbit of X with an element colored ci, pick one such element. Put these 

elements together in a set Xi. Then the set of all elements of X that are colored ci is JiXi = {jx : j ∈ Ji, x ∈ 

Xi}, that is, f 
-1

(ci) = JiXi. A one-to-one correspondence results between the sets Oi = Hci and {hJiXi : h ∈ 

G} where hJiXi denotes the image of JiXi under h. 

 

As a consequence of the orbit-stabilizer theorem given the assumptions above, we have the following: 

 

Theorem: 

1. The action of H on Oi is equivalent to its action on {hJi : h ∈ H} by left multiplication. 

 2. The number of colors in Oi is equal to [H : Ji]. 

 3. The number of H-orbits of colors is at most the number of H-orbits of elements of X. 

 4. If x ∈ Xi and StabH(x) = {h ∈ H : hx = x} is the stabilizer of x under the action of H on X then 

  (a) StabH(x) ≤ Ji . 

(b) |Hx| = [H : Ji] ⋅[Ji  : StabH(x)] 

 

Thus, using the above framework, we outline the steps to obtain a colored uniform honeycomb, 

where H permutes the colors of the resulting coloring. 

 

 1. Pick a cell t from an H-orbit of the elements of X. 

 2. Determine the finite group S* of isometries in H which stabilizes t, that is, S* = StabH(t). 

 3. Choose a subgroup J of H such that S* ≤ J. 

 4. Apply color c to cell t and to all the cells in the set Jt. If [H : J] = k, then Jt is 1/k of the cells in the 

H-orbit where t belongs. 

 5. Assign a color to every element of the set {hJt : h ∈ H}. The set Jt is given color c and each of the 

remaining k – 1 elements of the set gets a different color. In this coloring of the given H-orbit of cells, J 

will be the stabilizer in H of color c. 

 

Coloring Uniform Honeycombs

133



To obtain a coloring of a given uniform honeycomb, we consider each H-orbit of cells separately, 

coloring each orbit with a given set of colors such that H permutes the colors. If two H-orbits of cells are 

to have a color in common, the subgroup J used should contain the stabilizers of representative tiles from 

the two H-orbits. Combining the colored orbits of cells will give a colored honeycomb where all elements 

of H effect a permutation on the set of colors. 

  

Constructing perfect colorings of the truncated and bitruncated cubic honeycombs 

 
In this part of the paper, we discuss the construction of perfect colorings of the truncated and bitruncated 

cubic honeycombs. Given either a truncated or bitruncated cubic honeycomb, we apply the framework to 

arrive at colorings where the symmetry group G = [4, 3, 4] of the honeycomb effects a permutation of the 

colors in the coloring.  

 

In coloring the honeycombs, we will make use of the subgroups of G. (Table 1 gives a list of low 

index subgroups of G up to conjugacy in G obtained from [8, 16]). In this work, we obtain all perfect 

colorings where the number of colors used for each G-orbit is at most 4. Any other perfect coloring 

satisfying the given restriction on the number of colors may be obtained by a symmetry of the 

honeycomb, a one-to-one change of colors or a combination of both. We consider those colorings where a 

G-orbit of tiles gets at most 4 colors.  

 

 

Index Generators of the subgroup Index Generators of the subgroup 

2 A = <Q, R, S, PQP> 4 F = <P, RQ, SRSQ> 

2 E = <P, RQ, S> 4 B = <Q, R, S, PQRPQP> 

2 <P, RQ, SQ> 4 <Q, R, PQP, SRS> 

2 C = <P, Q, R, SRS> 4 <Q, R, PSQP, SRQP> 

2 <Q, R, SP> 4 <QP, RP, SRSP> 

2 <QP, RP, S> 4 <RQ, S, PRQP> 

2 <QP, RP, SP> 4 <RQ, SP, PRQP> 

3 <RPR, RQR, RSR, S, QPQ> 4 <RQ, SQ, PRQP> 

4 D = <P, Q, R, SRSQRS> 4 <RQ, PQS> 

Table 1: The index 2, 3, 4 subgroups of G = [4, 3, 4] up to conjugacy in G. 

 

 

Perfect colorings of the truncated cubic honeycomb. The truncated cubic honeycomb has two G-orbit 

of cells: the orbit X1 of octahedra and the orbit X2 of truncated cubes. The perfect colorings that we will 

discuss first will involve those colorings where the G-orbits of cells do not share a color; that is, a color 

that is used in X1 will not be used in X2. We will color X1 first, then X2. 

 

In coloring X1, we start with the cell labeled t in Figure 2(a). The stabilizer of t in G, StabG(t), is the 

group generated by Q, R, S, a group of type Oh, also known as the octahedral group. We need to select a 

subgroup J1 that satisfies the condition that StabG(t) ≤ J1. Using Table 1 we find that the groups A = <Q, 

R, S, PQP> and B = <Q, R, S, PQRPQP> are suitable choices for J1. 

 

To obtain a perfect coloring of X1 using A, we assign At the color light grey. To color the rest of the 

orbit, we apply the 2-fold rotation (PQ)
2
 about x on At to obtain a coloring of two colors shown in Figure 

2(a). A perfect coloring of X1 using B = <Q, R, S, PQRPQP> is given in Figure 2(b). The coloring is 

obtained by assigning all cells in Bt light grey. Then we assign the colors grey, black and white to the 

other cells by applying the 4-fold rotation PQ about x. 
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Next, we color the orbit X2 of truncated cubes. We start with the cell labeled t′ in Figure 2(c). The 

stabilizer of t′ in G, StabG(t′) is the group <P, Q, R> of type Oh. From Table 1, the groups C = <P, Q, R, 

SRS> and D = <P, Q, R, SRSQRS> contain StabG(t′), thus either C or D may be used to color X2. Using C 

and D, we obtain the colorings shown in Figures 2(c) and (d) respectively. 

 

Note that the group G can also be used to color X1 or X2 since it contains the stabilizer of every cell.   

Consequently, all the octahedra or the truncated cubes, respectively, will get one color. 

 

The perfect colorings of the truncated cubic honeycomb where the two G-orbits of cells do not share 

colors will be obtained by considering the perfect colorings of the octahedra in orbit X1 and the perfect 

colorings of the truncated cubes in orbit X2. Using G, A and B, there are 3 colorings of orbit X1 and using 

G, C and D, there are 3 colorings of orbit X2 that will give rise to 9 perfect colorings of the truncated 

cubic honeycomb where the orbits X1, X2 do not share colors and both X1 and X2 get at most 4 colors. 

 

 

 

 
Figure 2: Perfect colorings of X1 using: (a) A and (b) B; perfect colorings of X2 using: (c) C and (d) D.  

 

 

Perfectly colored honeycombs may also be arrived at by constructing colorings where the G-orbits of 

cells share colors. If a subgroup Ji is used to color one orbit of cells Xi, it can be used to color another 

orbit Xj as long as Ji contains the stabilizer of a tile in Xj. Moreover, if a color used to color cell t ∈ Xi is 

used to color cells in Xj then the tile t′ ∈ Xj  that will be assigned the same color as tile t should have a 

stabilizer contained in Ji.  

 

We wish to remark that in constructing non-trivial perfect colorings of the truncated cubic 

honeycomb, the G-orbits of cells X1 and X2 cannot share colors. The subgroups A and B, for example 

cannot be used to color cells in X2 since these groups do not contain a stabilizer of a cell in X2. Similarly, 

the subgroups C and D cannot be used to color cells in X1 since these groups do not contain a stabilizer of 

a cell in X1. 

 

 

Perfect colorings of the bitruncated cubic honeycomb. To color the bitruncated cubic honeycomb, we 

first note that this honeycomb has only one type of cell – the truncated octahedron. The symmetry group 

G of the bitruncated cubic honeycomb is cell-transitive. This means that we only have one G-orbit of cells 

to color. Since the symmetry group of the uncolored bitruncated cubic honeycomb is also G = [4, 3, 4], 

we will use the list provided in Table 1 to choose the subgroups that we can use to color. 

 

First, consider the truncated octahedron labeled t in Figure 3(a). The stabilizer of t in G is <P, Q, R> 

a group of type Oh. Aside from G, the groups C = <P, Q, R, SRS>, D = <P, Q, R, SRSQRS> contain <P, 

Q, R> and may be used to arrive at perfect colorings of the bitruncated cubic honeycomb. The colorings 

of the entire honeycomb using C and D are given in Figures 3(a) and (b), respectively. 
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Figure 3: Perfect colorings of the bitruncated cubic honeycomb using (a) C and (b) D. 

 

 
 

Semi-perfect colorings of the bitruncated cubic honeycomb 

 
In this part of our work, we illustrate the construction of semi-perfect colorings of the bitruncated cubic 

honeycomb. In this case, the group H consisting of elements that permute the colors in a given coloring is 

an index 2 subgroup of G. Following the framework presented earlier, the first step is to choose an index 

2 subgroup H and determine the H-orbits of cells. Then we proceed by coloring each H-orbit of cells 

separately. 

 

For our first example, let us construct a semi-perfect coloring where in particular the subgroup C = 

<P, Q, R, SRS>, permutes the colors in the given coloring. There are two C-orbits of cells. As shown in 

Figure 4(a), the set of “patched” cells is the C-orbit X1, while the set of white cells is the C-orbit X2. 

 

To color X1, we first choose our starting cell t labeled in Figure 4(a). Note that StabC(t) = <P, Q, R> 

of type Oh. The subgroup D = <P, Q, R, SRSQRS> of C contains <P, Q, R>, so that we let J1 = D. We 

assign the color light grey to the set Dt and black to the set aDt, to obtain the coloring shown in Figure 

4(b) (a is the two-fold rotation with axis x labeled in Figure 4(b)). 

 

To color X2, note that if t′ ∈ X2 then StabC(t′) ≤ C, so we can use C to color X2 and X2 gets a single 

color. Assuming the color white is used to color X2, the semi-perfect coloring we obtain is the coloring 

given in Figure 4(b). 

 

As a second example, let us construct a semi-perfect coloring where E = <P, RQ, S> is the group 

consisting of elements that will permute the colors of the coloring. In this case, all the truncated octahedra 

in the honeycomb will form one orbit of cells under E, so we only have one E-orbit to color. Consider the 

cell labeled t in Figure 4(c) where StabE(t) = <P, RQ>. The subgroup F = <P, RQ, SRSQ> of E has <P, 

RQ> as a subgroup, so that we may use F to color the honeycomb semi-perfectly. The resulting semi-

perfect coloring is shown in Figure 4(c). 
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Figure 4: (a) Two C-orbit of tiles of the bitruncated cubic honeycomb (C = < P, Q, R, SRS>); 

(b)-(c) Semi-perfect colorings of the bitruncated cubic honeycomb. 
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