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Abstract

In [1], Fernandez outlined an algebraic approach to the construction of Azulejo patterns. An open problem listed in 
this paper is “to describe the geometric features of these designs that account for their aesthetic properties.” This 
paper points to a direction to answer this problem. We identify aesthetic pleasantness with aesthetic challenge and
present two definitions of aesthetic challenge: (1) Aesthetic challenge can be partially defined and quantified by the 
number of English phrases needed to describe an Azulejo pattern; (2) We can also define aesthetic challenge as
equal to the number of primitive figures – isolated points and lines – in the fundamental octant of the Azulejo
pattern. We show that these two definitions correlate and that they provide an alternative to Fernandez’s purely 
algebraic approach for construction of Azulejo patterns. Several examples are presented showing that both 
approaches – the algebraic approach of Fernandez and the aesthetic challenge approach of the author - yield 
aesthetically pleasing designs. Future directions of research on the definition of aesthetic challenge are presented. 

1. Azulejo Patterns

Azulejos are the traditional designs used by Spanish artisans for many generations. They typically have a 
blue and white design painted on a ceramic tile. Federico Fernandez, a professional architect, described 
the mathematical properties of these varied and beautiful designs in [1]. Some examples of Azulejo and 
related patterns are presented below in Figure 1 which the reader is encouraged to review now.

    Intuitively, most people would consider the aesthetic pleasantness of the patterns in Figure 1 to increase 
as one goes from the two patterns in the leftmost column to the two patterns in the rightmost column.  
Fernandez’s goal, in his paper, was to find an algorithm that would exclusively produce patterns
considered aesthetically pleasing by most people.  The Fernandez algorithm does not, for example, 
produce the two patterns in the leftmost column of Figure 1. There are however, two areas for 
improvement in the Fernandez algorithm: (1) The Fernandez algorithm may occasionally produce patterns 
that are not considered aesthetically pleasing; the algorithm user must simply discard those patterns and 
produce new ones. (2) The Fernandez algorithm simply produces patterns without in any way 
distinguishing those patterns that are more aesthetically pleasing than others. For example, the Fernandez 
algorithm does not distinguish between the aesthetic appeal of the patterns in the middle and rightmost
columns of Figure 1.

    In an attempt to remedy these problems, in Sections 3 and 4 we present two definitions of aesthetic
pleasantness or aesthetic challenge, both definitions involving numerically quantifiable entities. We show 
that these two definitions highly correleate. Using these two definitions we proceed, in Section 4, to 
present an alternative to the Fernandez algorithm for producing Azulejo patterns. The patterns produced 
by the algorithm presented in this paper seem comparable in aesthetic pleasantness to the patterns
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produced by the Fernandez algorithm.  Nevertheless, as with the Fernandez algorithm, the algorithms 
presented in this paper occasionally produce patterns that most people would not consider pleasing.

    In this introductory section, we briefly sketch some important features of the Fernandez algorithm and 
indicate major areas where the approach presented in this paper differs.

    Fernandez starts Azulejo construction by computing the orbits of certain matrices acting on the integer 
lattice Z x Z and then extends the resulting sets by closing them under the actions of a subgroup of the 
dihedral group, D4. Fernandez’s method also allows elimination of the “simplistic” patterns presented in 
the leftmost column of Figure 1. As already pointed out the resulting Fernandez algorithm occasionally 
produces patterns that are not considered aesthetically pleasing and which must be discarded and replaced

    In a closing section of his paper Fernandez points to certain constructs, the fundamental octant and the 
fundamental N-square, which he says may point the way to a solution of the problem of defining 
aesthetic pleasantness.

                         
Figure 1: Six patterns with varying levels of aesthetic challenge.  Figures 1(b),(c),(e) and (f) follow the 
method in the Fernandez paper. Figures 1(a) and (d) are rejected as Azulejos by the Fernandez method 
but are brought here for purposes of contrast. More detail is presented in the text.

    The approach presented in this paper differs in two ways from the approach of Fernandez. First, in this 
paper we reverse the sequence in the Fernandez algorithm: Our approach to construction of Azulejo
patterns, presented in Section 2, starts with the construction of a fundamental octant, a subset of Zn x Zn,
and then proceeds to extend this set of points by closing them under the actions of the dihedral group, D4. 
This gives us a fundamental n x n square from which we can build up the entire Azulejo pattern by a 
process of translation. The second and major innovation introduced in this paper is that we do not use 
algebraic methods to construct the fundamental octant. Instead, we use complexity, a numerical quantity, 
defined in Sections 3 and 4, that seems to correlate with aesthetic pleasantness.

  
2. The Azulejo Algorithm

In this section we present an algorithm for construction of Azulejo patterns that is equivalent to the
Fernandez algorithm.  We also indicate which algorithm steps are modified by our approach. To facilitate
the readability of this section which is addressed both to mathematicians and to a less technical audience 
we first describe the algorithm visually and then present the algorithm formally.
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Figure 2: Fundamental octant (c) and fundamental N-square (d) for the Azulejo presented in Figure 1(b).

Informal visual description. The Fernandez algorithm has five steps. They will be illustrated using the 
Azulejo presented in Figure 1(b). Figures supporting the algorithm description are presented in Figure 2. 
1. Pixelation: It is important to emphasize that the Fernandez algorithm begins by perceiving the plane 

as represented by a grid of pixels. Each pixel has a unique address given by the Cartesian coordinates 
of its lower right corner. This is illustrated in Figure 2(a).  As is traditional, we identify each pixel 
with its address. For example the pixel in the lower left corner in Figure 2(a) is identified with the 
“address” (1,-3). Fernandez introduced pixelation since it powerfully allows the description of 
complex figures and patterns using simply computed arithmetic functions. For computational reasons 
we use a square with positive x coordinates and negative y coordinates.

2. The fundamental octant:  To begin Azulejo construction one starts with an n x n square of pixels as 
illustrated in Figure 2(a).  Here, n is an arbitrary integer selected by the algorithm user. We then select 
the pixels in the lower half of the lower right quadrant, illustrated in Figure 2(b). We call this lower 
half of the lower right quadrant the fundamental octant.

3. The octant pattern: The Fernandez algorithm requires filling-in, or coloring black, certain pixels in the 
fundamental octant.  The addresses of the pixels to be colored black are given by arithmetic 
functions.  Figure 2(c) illustrates one such octant pattern. Details are provided in the next subsection.

4. The N-square pattern: If the reader carefully studies the relation between Figures 2(c) and (d) (s)he 
will see that  the octant pattern in Figure 2(c) is simply reflected vertically, horizontally and 
diagonally in Figure 2(d). More precisely, Figure 2(c) consists of the pixel in the lower right corner, 
with an additional three-pixel pattern, while Figure 2(d) consists of the pixel in the lower right corner 
and an eight-fold repetition of the three-pixel pattern. This eight-fold repetition is accomplished by 
applying all combinations of horizontal, vertical and diagonal reflections. A formal description of the 
symmetries that transform Figure 2(c) into Figure 2(d) is given in the next subsection. 

5. The Azulejo pattern: If the reader carefully studies the relation between Figure 1(b) and Figure 2(d) 
(s)he will see that the Azulejo presented in Figure 1(b) is simply a “translation” of Figure 2(d) 
throughout the plane.

Formal Description. The formal description of the five steps listed in the last subsection are as follows:
1. Pixelation:  We use a traditional Cartesian system. The pixel associated with address (x,y) is the 

unique pixel whose lower right coordinates are (x,y) – e.g. (1,-3) is the lower left corner of Figure 2(a)
2. The fundamental octant:  To formalize the algorithm we suppose that  n  is a positive integer with 

positive divisor d and k is an integer with 0 ≤  k ≤ d - 1. The fundamental octant is defined as the 
collection of pixels whose addresses (x,y) satisfy the fundamental octant inequality, n/2 ≤ x,-y ≤   n.
Throughout this section we illustrate with n = 10, d = 10 and k = 3.

3. The octant pattern:  
a. To describe the pixels that will be colored black in the fundamental octant, Fernandez begins 

with the function x(d,0) + y(k, n/d) where x and y are arbitrary integers. For example, when  
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x = 6 and y = 7 this function equals 6(10,0) + 7(3,10/10) = (81,7).  
b. We next introduce the function [ ] defined as follows: if x and y  are integers, then we define 

[(x,y)] = (a,b), with 1 ≤ a,-b ≤ n and x ≡ a, y ≡ b (mod n).  For example, [(81,7)] = (1,-3). 
Heuristically, [ ] maps each pixel to its translate in the [1,n] x [-1,-n] square. 

c. We need a function to take the pixel (1,-3) to its “related pixel” in the fundamental octant. 
Formally, for 1 ≤  x,-y ≤ n, we define a function by <(x,y)> = (a,b), with n/2 ≤ a,-b ≤ n and 
(a,b) is a member of {[(±x, ±y)], [(±y, ±x)]}; e.g., <(1,-3)> = (9,-7).

d. Summary: Fernandez, by applying the functions [ ] and < > to the function x(d,0) + y(k, n/d),
where x and y are arbitrary integers, associates each x and y with a pixel in the fundamental 
octant which is to be colored black.

4. The N-square pattern:  Finally, we need an arithmetic method to take each pixel in the fundamental 
octant, and give all “related pixels” in the fundamental N-square.  Formally, for n/2 ≤ x,-y ≤ n we 
define <<(x,y)>> = {(a,b): <(a,b)> = <(x,y)> and 1 ≤  a,-b ≤ n}. For example, <<(1,-3)>> = {(1,-3), 
(1,-7), (9, -3), (9, -7), (7,-9), (7,-1), (3,-1), (3,-9)}.  The mathematical reader will recognize << >> as 
giving the orbit of a pixel modulo n under the actions of the dihedral group, D4. Heuristically, the 
dihedral group takes the pattern in the fundamental octant and reflects it in all 8 combinations of 
vertical, horizontal and diagonal symmetry.

5. The Azulejo pattern: Let O(n,d,k) denote the set of pixels in the fundamental octant. We define the 
fundamental N-square, N(n,d,k) = <<O(n,d,k)>>.  Here the function << >> applied to a set is simply 
the union of << >> applied to all members of that set. Heuristically, N is the orbit of O under the 
actions, modulo n, of the dihedral group, D4, and consequently N lies in the rectangle of pixels
[1,n] x [-1,-n]). Finally,  we define,  A(n,d,k)  = U {N(n,d,k)  + (x,y)): x and y varying over all 
integers,} (that is, A is the union of all integral translates of the N square)

    To increase richness and variety of patterns Fernandez allowed construction of Azulejos based on a set 
of integers K. Here, O(n,d,K) is simply the set-theoretic union of the O(n,d,k) as k varies over members of 
K.  We then define N(n,d,K) and A(n,d,K)  in the obvious ways. Examples are given in later sections.

The author’s algorithm: The author’s algorithm differs from the Fernandez algorithm only in step 3: 
Whereas Fernandez used the function x(d,0) + y(k, n/d) to generate the pixels in the fundamental octant
pattern, the author allows a random selection of pixels to be colored black provided the selected set of 
pixels has sufficient complexity. Complexity is defined in the next two sections.

3. Aesthetic Pleasantness

In this and the next section we outline our approach to the definition of aesthetically pleasing. We first 
identify aesthetic pleasantness with aesthetic challenge. In this section we explore the informal heuristic 
that the aesthetic challenge of an Azulejo pattern can be numerically quantified by the number of English 
phrases needed to describe it. We illustrate this approach using the three columns of Azulejo patterns 
presented in Figure 1:

 The leftmost column has aesthetic challenge 1: This corresponds to the fact that we would 
describe Figure 1(d) as a lattice of squares and Figure 1(a) as a lattice of diamonds. The 
numerical value of aesthetic challenge equal to one comes from the single underlined term 
needed to describe the figure. (Fernandez ruled out these patterns as Azulejo patterns by using 
algebraic criteria. However our approach will be to allow all patterns, classify them, and then 
only use the more complex ones.)

 The middle column has aesthetic challenge 2: This corresponds to the fact that we would describe 
Figure 1(b) as an alternating lattice of circles and points, or as an alternating lattice of octagons
and points, and we would describe Figure 1(e) as a lattice of diamonds with inscribed squares.
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The numerical value of aesthetic challenge equal to two comes from the two underlined terms 
needed to describe the figure. Notice that these descriptions are not complete. For example, the 
diamonds in Figure 1(e) use punctured lines for their sides. However, the basic bird’s-eyeview 
description of the figure is diamonds with inscribed squares. As indicated above, this method of 
measuring aesthetic pleasantness by counting phrases, is informal.

 The rightmost column has aesthetic challenge 3+: To describe either pattern in the rightmost
column we need at least three descriptors, possibly more. For example, Figure 1(c) has the 
following subthemes: (1) octagons of points with a point in the center, (2) four sets of a pair of 
solid rectangles surrounding a blank square and (3) two opposing sets of solid rectangle pairs
surrounding a point. There are of course other ways of describing the Azulejo pattern but they all 
involve a reference to at least three subthemes.  Similarly Figure 1(f) may be described using the 
following subthemes: (1) A white square with a central dot, (2) two opposing solid rectangles
with a white slit separating them and white center, (3) a white dot, inscribed in a black square, 
inscribed in a rounded white square with ornaments. Again, other descriptions are possible but 
they all would use at least three basic subthemes. Also note that the above descriptions of Figure
1(c) and Figure 1(f) are informal in the precise sense that an outside person could not reproduce
the Azulejo pattern from the three subthemes because there is further richness to the pattern.

    Frequently, in a mathematics paper, definitions are presented as is without further defense. However, in 
this paper we are using a definition to capture a human concept - aesthetic pleasantness. We therefore 
review the heuristic arguments for number of English phrases capturing aesthetic pleasantness:  

    The basic psychological assumption used is that the challenge to the viewer to identify patterns in a 
figure creates a sense of accomplishment, satisfaction, and aesthetic pleasantness. The viewer of Figures 
1(a), (b), (d), and (e) can instantly recognize and understand these patterns; there is no further challenge; 
hence these patterns are not aesthetically challenging. By contrast, Figures 1(c) and (f) are more 
challenging, since more sub-patterns must be identified. Note particularly that a random array of dots 
would not be as challenging. The important point to emphasize is that there is challenge coupled with 
partial accomplishment. Consequently, Figures 1(c) and (f) are very challenging because the viewer 
trying to discern the multiple underlying patterns only achieves a partial success by identifying several 
various subthemes which however only cover a significant part of the pattern.

    For purposes of this paper we will suffice with (arbitrarily) categorizing challenge levels as equal to 1,
2 and 3+. In the next section, we continue our attempt to numerically quantify aesthetic challenge.

4. Fundamental Octant Complexity

As explained in the last section, Figure 1(b) requires two English keywords to describe the pattern. 
Heuristically, we would like to argue that the fundamental octant for this figure, exhibited in Figure 2(c),
is overly simplistic, containing one line segment and 2 pixels; this octant simplicity gives rise to the 
simplicity of Figure 1(b). To facilitate formalizing this intuition of octant complexity we first present a
simple lemma describing the relation between the fundamental octant and the full Azulejo pattern.

    Lemma 1: Let O be the fundamental octant with fundamental square N, of an Azulejo pattern,
A(n,d,K).

(a) A singleton pixel, (n,-n) in the set O gives rise to one pixel in N. Similarly if n is even then 
(n/2, -n/2) in the set O gives rise to one pixel in N.

(b) A singleton pixel (m,-m) in the set O, with m ≠ n, m ≠ n/2, gives rise to 4 pixels in N.
(c) A singleton pixel (n,-k) in the set O, with k ≠ n,   k ≠ n/2   gives rise to 4 pixels in N.
(d) A singleton pixel (j,-k) in the set O, with j ≠ k, j,k ≠ n,   j,k ≠ n/2,  gives rise to 8 pixels in N.
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(e) If n is even then the singleton pixel (n, -n/2) in O gives rise to 2 pixels in N.

    Proof: Parts (a) - (e) all follow from the the definition of << >> and the fundamental octant inequality. 
For example <<(n,-n)>> = {(n,-n)} since [(±n, ±n)] = (n,-n) by our conventions of representatives of Zn. 
Similarly for case (d) the << >> function produces the orbit of (j,-k) under the dihedral group, D4, which 
has 8 pixels.

    We now define, C = C(n,d,K), the octant complexity level, as follows:
a) For each vertical, horizontal, diagonal and anti-diagonal “line” with two or more pixels in 

O – {(n,-n)} we assign a value of one; (if a pixel in O - {(n,-n)} is shared by two such lines then 
both lines are assigned a value of one); here, by the term “line” we mean any collection of filled-
in pixels, not necessarily consecutive, whose addresses satisfy a linear equation (note, since we 
only allow horizontal, vertical and (anti)-diagonal lines the slope must be 0,1,-1, or infinity).

b) For each remaining pixel not on any of the lines enumerated in (a) we assign a value of one.
C is defined as the sum of assigned values.

                               
Figure 3: The fundamental octants and their complexities, for the six Azulejo patterns in Figure 1.
The verification of the numerical complexities is left as an exercise for the reader.

    Three points should be noted about our definition of complexity: (1) The numerical complexity, C,
increases as one goes from the leftmost column to the rightmost column in Figure 1. (2) The octant 
complexity, C, correlates with the number-of-English-phrases complexity introduced in the last section.  
(3) Our definition of complexity surprisingly avoids any mention of symmetry! The Section-2 description 
of the Fernandez algorithm shows an ingenious separation of a symmetry component (Step 4) from a non-
symmetry component (Step 3). That is, the octant pattern (Step 3) need not have any symmetry since by 
applying the dihedral group symmetries (Step 4) the resulting Azulejo will have symmetry.

   We are now ready to identify the non-algebraic criteria used in this paper for constructing octants.

    Definition: An octant is said to be minimally aesthetically challenging if its octant complexity is at least 
3. An octant is said to be very aesthetically challenging if its octant complexity is at least 10 (this choice 
of 10 in the definition is somewhat arbitrary). The corresponding Azulejo pattern is said to be minimally 
or very aesthetically challenging if its octant is minimally or very aesthetically challenging.

    As already indicated at the end of Section 2, Fernandez constructed the fundamental octant using 
certain simple linear arithmetic functions. The position of the author is that a random approach to octant 
pattern construction is equally capable of producing aesthetically pleasing patterns.
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5. Aesthetically Pleasing Azulejos Based on Random Octants

The goal of this section is to compare the aesthetic pleasantness of Azulejos whose octant construction is
based on complexity vs. an algebraic definition. The octants and corresponding Azulejos are presented in 
Figures 4 and 5 respectively which the reader is invited to review now. The reader can readily compare 
the aesthetic pleasantness of these Azulejos to verify the thesis of this paper that a complexity approach to 
octant construction is a viable alternative to Fernandez’s algebraic approach. The following additional 
points should be made:

    Figures 5(a) and 5(d) use Fernandez’s algebraic approach. The octants each have C > 20. As can be 
seen the Azulejos are indeed very aesthetically challenging. By contrast, Figures 5(b), (c), (e) and (f) use 
a pure complexity approach without an underlying algebraic generation.  Figures 4(b), (c), (e) and (f)
should be approached as follows:

   Figure 4(b) was a first attempt at aesthetic challenge without algebra. The octant has one pixel, one 
diagonal (left to right upward) and one vertical line. Its complexity is five (there are two extra downward 
diagonals (left to right). Figure 5(b) shows the corresponding Azulejo.  It can be described with three 
English phrases: (1) a pixel (2) inscribed in a diamond, (3) inscribed in a 4-corner-square. The three 
English phrases needed to describe the Azulejo clearly correspond to the three connected components of 
the octant: by lemma 1, the pixel in the lower right corner remains a pixel in the Azulejo, the upward (left 
to right) diagonal becomes a diamond, and the vertical line becomes a 4-corner-square. 

    Figure 5(b) is only minimally aesthetically challenging. It can be completely described with three 
English phrases. Figures 4(c), (e), and (f) are attempts to remedy this simplicity.
 Figure 4(c) “fixes” Figure 4(b) by adding an extra dot and an extra upward diagonal. The 

resulting Azulejo now requires five English phrases to describe it: a (1) pixel (2) inscribed inside 
a diamond (3) inscribed in a 4-pixel square (4) inscribed in a 4-corner square. Each set of four of 
these four-fold nested patterns forms a square with (5) a diamond in the center. Although this
Azulejo has complexity nine it is too transparent in the precise sense that it can be completely
described by the five phrases.

 Figure 4(e) “fixes” Figure 4(b) by adding a “random” assortment of dots. The resulting Azulejo 
pattern, Figure 5(e), is more aesthetically challenging in the precise sense that it can’t be 
completely described.

 Figure 4(f) goes one step beyond Figure 4(e) by providing a pure random assortment of dots 
without any lines.  Although C = 5, this pattern appears more aesthetically challenging than 
Figure 5(c) whose complexity equals 9.  The observation that many people consider Figure 4(f), 
with C = 5, more aesthetically challenging than Figure 4(c), with C = 9, strongly suggests that the 
definitions of aesthetic challenge presented in this paper are only useful approximations and that 
further research into a better definition of aesthetic challenge is needed.

    The above remarks suggest the following future directions of research, which were already raised in 
[1]. (1)  Do random dot assortments which miss lines produce aesthetically pleasing Azelujos? – if so, is 
there a way of numerically quantifying the complexity of random dot patterns?   (2) When there are 
competing lines, diagonals and pixels in an octant which ones will stand out in the resulting Azulejo?  
(3) What algebraic and graph theoretic properties of octants result in Azulejos that are completely 
describable?  (4) Figures 4(e) and 4(f) use knight jumps (1 diagonally down and 1 over) to produce the 
random dot configurations; is this method generalizable?
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Figure 4: Comparison of octants based on an algebraic definition (Figures a,d) vs. a complexity                                                

approach (Figures b, e, c, f). The corresponding Azulejos are presented in Figure 5.

                  
Figure 5: Azulejo patterns for the fundamental octants of Figure 4.
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