Mathematical Connections in Art, Music, and Science

PROCEEDINGS 2008

Reza Sarhangi and Carlo Séquin, Chief Editors

Municipality of Leeuwarden, The Netherlands
Stenden University
The Foundation Passages
Eindhoven University of Technology
University of Twente
Bridges Leeuwarden
Mathematics, Music, Art, Architecture, Culture

2008
Celebrating the 110th Birth Year of M.C. Escher
During the Eleventh Annual Bridges Conference

BRIDGES LEEUWARDEN

CHN University Netherlands
Leeuwarden, the Netherlands

Municipality of Leeuwarden
The Netherlands

The Foundation Passages
Eindhoven University of Technology
University of Twente

Mathematical Connections in Art, Music, and Science
Proceedings 2008

Reza Sarhangi and Carlo Séquin, Chief Editors

Tarquin Publications
Bridges Leeuwarden,
Mathematics, Music, Art, Architecture, Culture
Conference Proceedings 2008

Editors:

Reza Sarhangi
Department of Mathematics
Towson University, Towson, Maryland, USA

Carlo H. Séquin
EECS Computer Science Division
University of California, Berkeley, USA

© Bridges Leeuwarden Conference. (http://www.bridgesmathart.org). All rights reserved. General permission is granted to the public for non-commercial reproduction, in limited quantities, of individual articles, provided authorization is obtained from individual authors and a complete reference is given for the source. All copyrights and responsibilities for individual articles in the 2008 Conference Proceedings remain under the control of the original authors.

ISBN: 9780966520194
ISSN: 1099-6702

Printed in the UK by InType Libra

Distributed by MATHARTFUN.COM (http://mathartfun.com) and Tarquin Books (www.tarquinbooks.com)

Front cover: Day and Night by M.C. Escher, 1938, © The M.C. Escher Foundation. Used with permission.

All the Escher images used in the 2008 Bridges Proceedings are published with the kind permission of the M.C. Escher Foundation – Baarn – The Netherlands.

Back cover: Trefoil Knot by Karel Vreeburg; No. 1, Type 1, 1 ,1, 1 (a) by David Bailey; Brainstrain 1, Atom and Eve 2 by Dick Termes; Polyhedra de los Leones by Briony Thomas; Echinodermania 2 by George Hart.

Cover design by Jeffrey Rutzky.
Bridges Leeuwarden

Scientific Organizers

Reza Sarhangi
Department of Mathematics
Towson University
Towson, Maryland, USA

Rinus Roelofs
The Foundation Passages
Hengelo, the Netherlands

Zsófia Ruttkay
Department of Computer Science
University of Twente
the Netherlands

Arno Pronk
Department of Architecture,
Building and Planning
Eindhoven University of Technology, the Netherlands

Local Organizer

Cor Wetting
The City of Leeuwarden
The Foundation Passages
Leeuwarden, the Netherlands

Bridges for Teachers, Teachers for Bridges

Mara Alagic
Department of Curriculum and Instruction
Wichita State University
Wichita, Kansas, USA

Paul Gailiunas
Newcastle, England

Bridges Visual Art Exhibit

Robert W. Fathauer
Tessellations Company
Phoenix, Arizona, USA

Ann Burns
Department of Mathematics, Long Island University, New York, USA

Nat Friedman
Department of Mathematics and Statistics, University at Albany
New York, Albany, USA

Conference Website and Electronic Correspondence

George W. Hart
Department of Computer Science
Stony Brook University, New York, USA

Craig Kaplan
David R. Cheriton School of Computer Science, University of Waterloo, Canada

Conference Board of Advisors

Craig Kaplan
David R. Cheriton School of Computer Science, University of Waterloo, Canada

George W. Hart
Department of Computer Science
Stony Brook University
New York, USA

Carlo H. Séquin
EECS, Computer Science
University of California, Berkeley, USA
Chief Editors:

- Reza Sarhangi
 Department of Mathematics
 Towson University, Towson, Maryland, USA
- Carlo H. Séquin
 EECS Computer Science Division
 University of California, Berkeley, USA

Program Committee

<table>
<thead>
<tr>
<th>Chief Editors</th>
<th>Program Committee</th>
<th>Chief Editors</th>
<th>Chief Editors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reza Sarhangi</td>
<td>Mara Alagic</td>
<td>Javier Barrallo</td>
<td>Ann Burns</td>
</tr>
<tr>
<td>Department of Mathematics</td>
<td>Department of Curriculum and Instruction</td>
<td>School of Architecture</td>
<td>Department of Mathematics,</td>
</tr>
<tr>
<td>Wichita State University, Wichita, KS</td>
<td>The University of the Basque Country San Sebastian, SP</td>
<td>The University of the Basque Country San Sebastian, Spain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paul Gailiunas</td>
<td>Francisco Gómez</td>
<td>George W. Hart</td>
</tr>
<tr>
<td></td>
<td>Newcastle, England</td>
<td>U. Politécnica de Madrid, SP</td>
<td>Department of Computer Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stony Brook University, NY</td>
</tr>
<tr>
<td></td>
<td>Craig Kaplan</td>
<td>Douglas McKenna</td>
<td>Robert V. Moody</td>
</tr>
<tr>
<td></td>
<td>Cheriton School of Computer Science, University of Waterloo, Canada</td>
<td>Mathemaesthetics Inc.</td>
<td>Mathematics Department,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boulder, Colorado, USA</td>
<td>University of Victoria,</td>
</tr>
<tr>
<td></td>
<td>Rinus Roelofs</td>
<td>Reza Sarhangi</td>
<td>British Columbia, Canada</td>
</tr>
<tr>
<td></td>
<td>The Foundation Passages</td>
<td>Department of Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hengelo, the Netherlands</td>
<td>Towson University</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Towson, Maryland, USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Sharp</td>
<td>John M Sullivan</td>
<td>Godfried T. Toussaint</td>
</tr>
<tr>
<td></td>
<td>London Knowledge Lab</td>
<td>Technische Universität Berlin</td>
<td>School of Computer Science</td>
</tr>
<tr>
<td></td>
<td>Institute of Education</td>
<td>Berlin, Germany</td>
<td>Schulich School of Music</td>
</tr>
<tr>
<td></td>
<td>University of London, UK</td>
<td></td>
<td>McGill University, Canada</td>
</tr>
</tbody>
</table>
Contents

Preface

Lessons in Duality and Symmetry from M.C. Escher
 Doris Schattschneider 1

The Sculpture Manifold: A Band from a Surface, a Surface from a Band
 Bernd Krauskopf, Hinke M. Osinga, and Benjamin Storch 9

Color Mixing using Colliding Particles
 Gary R. Greenfield 15

Hankin’s ‘Polygons in Contact’ Grid Method for Recreating a
Decagonal Star Polygon Design
 B. Lynn Bodner 21

Connected Holes
 Rinus Roelofs 29

Metamorphosis in Escher’s Art
 Craig S. Kaplan 39

The Catenary: Art, Architecture, History, and Mathematics
 Gail Kaplan 47

Mathematical Beauty in Architecture
 Huib Koman, Stephan Luijks, and Arno Pronk 55

The Borromean Rings: A Video about the New IMU Logo
 Charles Gunn and John M. Sullivan 63

Systematic Approaches to Color Interaction: Limited Palettes for
Simultaneous Contrast Effects
 James Mai 71

Building a Möbius Bracelet Using Safety Pins:
A Problem of Modular Arithmetic and Staggered Positions
 Eva Knoll 79

The Brachistochrone Problem between Euclidean and Hyperbolic
 Robert Smits 87

Sculpting from the Inside Out “540 Hidden Split Torus”
 Karel Vreeburg 93
Patterning by Projection: Tiling the Dodecahedron and other Solids
B.G. Thomas and M.A. Hann

Pull-up Patterned Polyhedra: Platonic Solids for the Classroom
E.B. Meenan and B.G. Thomas

From Sierpinski Triangle to Fractal Flowers
Anne M. Burns

Designing Symmetric Peano Curve Tiling Patterns with Escher-esque Foreground/Background Ambiguity
Douglas McKenna

Doyle Spiral Circle Packings Animated
Alan Sutcliffe

Intricate Isohedral Tilings of 3D Euclidean Space
Carlo H. Séquin

The Mathematics of the Channel Anamorphosis
James L. Hunt and John Sharp

A Sangaku Revived
Zsófia Ruttkay

Inpainting of Ancient Austrian Frescoes
Wolfgang Baatz, Massimo Fornasier, Peter A. Markowich, and Carola-Bibiane Schönlieb

A Computer Aided Geometric Model of a Ten-Plane Polyhedral Transformation
Robert McDermott and Will Hawkins

Neo-Riemannian Geometry
Rachel W. Hall

A Comparative Phylogenetic-Tree Analysis of African *Timelines* and North Indian *Talas*
Eric Thul and Godfried T. Toussaint

The Maths of Churches, Mosques, Synagogues and Temples
Jenny Gage

Interactive 3D Simulation of Escher-like Impossible Worlds
E.M. Orbons and Zs. Ruttkay

Procedural Generation of Sculptural Forms
George W. Hart

Counting the Number of Site Swap Juggling Patterns with Respect to Particular Ceilings
Carl Bracken
The Mathematics of Mitering and its Artful Application
Tom Verhoeff and Koos Verhoeff

Connecting the Dots: The Ins and Outs of TSP Art
Robert Bosch

Manipulating Images with Fractal Julia Sets
Stanley Spencer

Making Patterns on the Surfaces of Swing-Hinged Dissections
Reza Sarhangi

Edge-Based Intersected Polyhedral Paper Sculptures Constructed by Interlocking Slitted Planar Pieces
Jace Miller and Ergun Akleman

Diffusion Processes and Light Installations: Mathematics, Visualisation, and Perception
Mike Kostner, Arjan Kuijper, and Franz Schubert

Interactive Demonstrations with Mathematica 6
Sándor Kabai

A Closer Look at Jamnitzer's Polyhedra
Albert van den Broeke and Zsófia Ruttkay

A Fractal Crystal Comprised of Cubes and Some Related Fractal Arrangements of other Platonic Solids
Robert W. Fathauer, Hank Kaczmarski, and Nicholas Duchnowski

Medieval Islamic Architecture, Quasicrystals, and Penrose and Girih Tiles: Questions from the Classroom
Raymond Tennant

Recursion, Symmetry & Tessellation with Software based Video Feedback Systems
Paul Prudence

Coxeter Groups in Colored Tilings and Patterns
Glenn R. Laigo, Ia Kristine D. Puzon, and Ma. Louise Antonette N. De Las Peñas

Porter's Golden Section, Experimentally
Chris Bartlett and D Huylebrouck

Perspective Drawings of Lattices
Chaim Goodman-Strauss and Hop David

Some Interesting Observations Regarding the Spidrons
Dániel Erdély and Walt van Ballegooijen
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A “Circle Limit III” Backbone Arc Formula</td>
<td>341</td>
</tr>
<tr>
<td>Douglas Dunham and Luns Tee</td>
<td></td>
</tr>
<tr>
<td>Connecting Mathematics and the Arts through the Magic of Escher for Elementary School Students</td>
<td>347</td>
</tr>
<tr>
<td>Marilyn Sue Ford and Sarae Gold</td>
<td></td>
</tr>
<tr>
<td>Module-Based Sculptural Constructions</td>
<td>353</td>
</tr>
<tr>
<td>Roland de Jong Orlando</td>
<td></td>
</tr>
<tr>
<td>Painting the Total Picture</td>
<td>363</td>
</tr>
<tr>
<td>Dick Termes</td>
<td></td>
</tr>
<tr>
<td>Cosmati Pavements: The Art of Geometry</td>
<td>369</td>
</tr>
<tr>
<td>Tristram de Piro</td>
<td></td>
</tr>
<tr>
<td>Teaching Group Theory Using Portraits of Groups</td>
<td>377</td>
</tr>
<tr>
<td>Jay Zimmerman</td>
<td></td>
</tr>
<tr>
<td>Four Bar Linkages</td>
<td>381</td>
</tr>
<tr>
<td>Paul Gailiunas</td>
<td></td>
</tr>
<tr>
<td>The Tangramoid: Recent Developments</td>
<td>385</td>
</tr>
<tr>
<td>Samuel Verbiese</td>
<td></td>
</tr>
<tr>
<td>TENSEGRITIES: Design, Analysis and Constructing</td>
<td>389</td>
</tr>
<tr>
<td>Jan W. Marcus</td>
<td></td>
</tr>
<tr>
<td>Pattern by Design – Not by Chance</td>
<td>393</td>
</tr>
<tr>
<td>M.A. Hann and B.G. Thomas</td>
<td></td>
</tr>
<tr>
<td>Using Binary Numbers in Music</td>
<td>397</td>
</tr>
<tr>
<td>Vi Hart</td>
<td></td>
</tr>
<tr>
<td>Image Stitching: From Mathematics to Arts</td>
<td>401</td>
</tr>
<tr>
<td>Franz Schubert, Arjan Kuijper, and Mike Kostner</td>
<td></td>
</tr>
<tr>
<td>Can Geometry Create Art?</td>
<td>405</td>
</tr>
<tr>
<td>András Bezdek</td>
<td></td>
</tr>
<tr>
<td>Masterpiece: Interactive Evolution in Visual Domain</td>
<td>409</td>
</tr>
<tr>
<td>Artemis Moroni, Rafael Bocaletto Maiolla, and Jônatas Manzolli</td>
<td></td>
</tr>
<tr>
<td>The Art of Equations</td>
<td>413</td>
</tr>
<tr>
<td>Lin Hsin Hsin</td>
<td></td>
</tr>
<tr>
<td>Mathematical Secrets of Seven</td>
<td>417</td>
</tr>
<tr>
<td>Susan McBurney</td>
<td></td>
</tr>
<tr>
<td>Moiré</td>
<td>421</td>
</tr>
<tr>
<td>Koert Feenstra</td>
<td></td>
</tr>
</tbody>
</table>
A Geometric Model Applied To Urban Order
Cristina Argumedo, Mª Francisca Blanco
Dora Giordano and Miriam Pisonero

Mathematics in Rangolee Art from India
Madhuri Bapat

Polyhedra with Equilateral Heptagons
Marcel Tünnissen

Triblock Origami Spheroid Workshops
Keh-Ming Lu, Alan S Tsaur, and Feng-Tse Chuang

Mathematical Eyes on Intercultural Communication Processes
Mara Alagic and Glyn Rimmington

Ternary Codes in Psychology, Culture, and Art: Information Roots
Vladimir Petrov and Lidia Mazhul

Artistic ideas regarding ‘Print Gallery’ by M.C. Escher
André Génard

A Guide to Creating Escher-like Bird Motif Tessellations
David R. M. Bailey

Using D-Forms to Create a Calder Type Mobile
Eva Knoll, John Sharp, and Roger Tobie

Some Regular Toroids
Lajos Szilassi

Juno’s Spinner Truncated Icosahedron
Junichi Yananose

Mathematics and Arts: Finding the Horizon of Understanding for Arts Students
Hartmut F. W. Höft and Joanne Caniglia

Visualization of Rhyme Patterns in Two Sonnet Sequences
Laura J. George and Hartmut F. W. Höft

Create a Mathematical Banner Using the Lute, the Sacred Cut, and the Spidron
Elaine Krajenke Ellison

Hammam: Bath House, an Ancient Heritage in Iran
Houriieh Mashayekh and Hayedeh Mashayekh

Shape and Transformations
Marcela Carolina Franco

Imaging, Mathematics, and Art
Arjan Kuijper and Helma Kuijper
SUDOKU Puzzle Generates a Minimal Art Sculpture
 Hans Kuiper

Aesthetic Beauty of Rotation
 Ergun Akleman and Vinod Srinivasan

The Speed of Mathematics
 Javier Barrallo

The Hidden Art in a Dynamic Geometry Software Program
 Evan G. Evans and Reza Sarhangi

Projecting Mathematical Curves with Laser Light: A Tribute to Ptolemy
 Merrill Lessley and Paul Beale

Fibonacci Tornado: Phylotaxy Spirals consisting of all Similar Triangles
 Akio Hizume

Three Musical Geometries
 Dmitri Tymoczko

Spatial Anisotropy in Aesthetic Impression of Simple Color Arrangement Patterns
 Toshihiro Bando

Index
Preface

For this eleventh year of the Bridges Conference, no city could be more appropriate than Leeuwarden, The Netherlands, the birthplace of M. C. Escher to host this event. The Bridges Conferences are annual multidisciplinary gatherings celebrating the connections between mathematics and art. In the perpetual partnership of mathematics and art, one of the most influential artists was certainly M. C. Escher.

In the introduction of the book, *M. C. Escher, The Graphic Work*, republished in 1994, Escher describes himself: "The ideas that are basic to them often bear witness to my amazement and wonder at the laws of nature which operate in the world around us. He who wonders discovers that this is in itself a wonder. By keenly confronting the enigmas that surround us, and by considering and analyzing the observations that I had made, I ended up in the domain of mathematics. Although I am absolutely without training or knowledge in the exact sciences, I often seem to have more in common with mathematicians than with my fellow artists."

This year we are in Leeuwarden, where Escher was born 110 years ago, so it is appropriate that the four days of talks includes an Escher Day in celebration of his contributions.

The conference also includes a day for an excursion to several churches built in the middle Ages that also are the exhibit place of artwork of several modern European artists, to the National Ceramics Museum Het Princessehof, (located in the birth house of M.C. Escher), and to the Fries museum. In addition, the winners of the Gateways to Fryslân art competition will be announced at the conference, with €30,000 in prizes to be awarded by the Province of Friesland. We are very grateful to the Christelijke Hogeschool and the local organizers, Andrew Borgart, Arno Pronk, Rinus Roelofs, Zsófia Ruttkay, and Cor Wetting, for the many excellent arrangements.

This is the first year that we have used a web-based paper submission system. We received a record number of submitted papers, and their contents and styles were spread over a particularly wide spectrum. This made it difficult to prune down the count to a manageable number of standard-length papers. Many authors had to be told to compress their material into a shorter presentation. The electronic submission and reviewing system caused some difficulties with many people who encountered such a system for the first time. On the positive side, the EasyChair system allowed us to distribute the reviewing process among a sizable international program committee. Our goal was to aim for an ever higher quality content of the conference; subjecting the full-length papers to a more rigorous reviewing process was a step in that direction.

Carlo Séquin, who served as the chair of the program committee, provided overall management, and distributed the papers among the associate editors who coordinated with the individual reviewers. After a careful reviewing process, the program committee selected 49 regular papers, and 37 short papers. As a result, this year’s proceedings will be another wonderful source of inspiration, as well as a handy reference for many key ideas.

The authors are artists, mathematicians, computer scientists, musicians, architects, teachers, and others, who are coming to the conference from twenty-five different countries. The conference participants are not only diverse in their fields of studies, but they also bring different cultures and backgrounds. The conference promises to be a most interesting event, full of rich, interdisciplinary experiences.
The Exhibition of Mathematical Art is a highlight of the Bridges Conference. This year, the work of more than 60 artists will be represented. The exhibition features metal, wood, and stone sculpture, computer art, beadwork, paper folding, quilts, paintings, etchings, and photography. Mathematical topics explored in the art include fractals, polyhedra, tiling, knots, non-orientable surfaces, and hyperbolic geometry. Some of the submitted artwork is shown on the proceedings back cover. The complete exhibit can be seen at the Bridges website (www.bridgesmathart.org) and on the accompanying CD-ROM.

The cover of the proceedings book includes “Day and Night” by M.C. Escher, which Jeffrey Rutzky beautifully embedded into the overall design.

Hofstadter, the author of Gödel, Escher, Bach, in an article in the M.C. Escher’s Legacy book (Edited by D. Schattschneider and M. Emmer), writes about the first time that he saw an Escher print, the time when he was twenty years old, in January of 1966, in the office of Otto Frisch, who played a major role in unraveling the secrets of nuclear fission. He was mesmerized by “Day and Night”, showing two flocks of birds, one in white and one in black, flying in opposite directions through each other. He asked Frisch “What is this?” Frisch replied, “It is a woodcut by a Dutch artist, and I call it ‘Field Theory’…”

The young man ponders the relationship between this artwork and the domain of physics that Frisch is referring to: “I knew that one of the key principles at the heart of field theory is the so-called CPT theorem, which says that the laws of relativistic quantum mechanics are invariant when three “flips” are all made in concert: space is reflected in a mirror, time is reversed, and all particles are interchanged with their antiparticles. This beautiful and profound principle of physics seemed deeply in resonance with Frisch’s Escher print…”

The Bridges Conferences are run by the non-profit Bridges Organization, with a small board of directors and many enthusiastic volunteers. We are proud and grateful that our organization has attracted many countries and universities from around the world to open their doors to our conference.