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Abstract 
 

This paper describes the math and technology required to project a variety of mathematical curves with a 
computerized laser light control system.  The focus is upon creating “large-scale” animated laser projections of 
roulette or spirograph shapes, such as those found in the epitrochoid, hypotrochoid, epicycloid, and hypocycloid 
families. The projection process described utilizes a geometric approach that was first presented by the Greek or 
Egyptian mathematician and astronomer Ptolemy, that of “epicycles.” Examples of these laser images can be 
viewed at http://spot.colorado.edu/~lessley/.    

 
 

Introduction 
 
Many mathematical curves in the epitrochoid, hypotrochoid, epicycloid, and hypocycloid families are 
beautiful to view.  These curves are usually graphed by incorporating such devices as a plotter, printer, or 
video device. The most common mechanical method for graphing such curves involves a spirograph tool 
in which a small trace wheel is rotated within a larger stationary wheel. While these techniques produce 
interesting images, the images are normally rather small and not animated.  Creating very large-scale 
animated images with high-intensity lasers such as those encountered in laser light shows, concerts, or art 
installations require some unusual graphing and projection strategies. 
  
 

The Problem: Moving from the Spirograph to the Laser 
 
Forming a projected pattern of any mathematical curve with a moving laser “dot” is done by “scanning” 
that dot rapidly with X and Y axes galvanometers through an image path at least sixteen times a second. 
At this rate, our “persistence of vision” makes the image appear solid. Scanning a laser dot rapidly in a 
circular pattern creates the appearance of a solid circle in light. Furthermore, in moving the laser dot to 
draw a series of smaller circles that follow the path of a larger circle (a roulette shape), we see that--unlike 
the spirograph tool with its static base circle--the trace and base circles rotate simultaneously.  When 
scanning this way, both circles usually possess individual frequency and diameter factors. In terms of 
geometric patterns, this is similar to what the ancient Greek or Egyptian astronomer/mathematician 
Ptolemy expressed in his attempt to explain the visual motion of the planets by developing the idea of 
“epicycles.” Of critical importance in our project was how Ptolemy’s approach could help us create 
roulette patterns in a slightly different manner than we would normally do with a conventional spirograph 
tool. His method has the trace circle rotating “on the circumference” of the base circle (not inside or 
outside of it).  Both circles can also maintain differing rotational speeds (frequencies) and directions. In 
terms of translating the math to electromechanical scanning devices (galvanometers), through summing 
amplifiers and digital-to-analog converter circuits, this approach is simple and very flexible.  Epitrochoid 
and hypotrochoid formulas can be modified to include special-case curves like the rose and ellipse. 
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           (a)                                 (b)                                     (c) 

 
   Figure 1: Traditional spirograph device (a and b) compared                  Figure 2: Laser projection 
          to Ptolemy’s epicycle approach (c).                                                         of a hypotrochoid curve. 
 
 
Items (a) and (b) in Figure 1 follow the normal graphing strategy used by a spirograph device.  Drawing 
(c) shows how our tracing strategy follows the epicycle approach in which the center of the trace circle 
moves on the circumference of the base circle and both circles rotate simultaneously. 
 
This mathematical approach requires that the traditional spirograph or roulette equations be modified to 
accommodate the “dynamic” nature of having the base and trace circles move simultaneously.  For 
example, the usual parametric equation for graphing a hypotrochoid curve is shown in Figure 3; our 
approach, Figure 4, uses base and trace oscillators to form the hypotrochoid images (where 
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fbase  is the number of times per second that the base oscillator completes a cycle). 
Figure 2 is an actual laser projection of a typical hypotrochoid curve that was created with this 
mathematical approach. 
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    Figure 3: Traditional parametric equation                          Figure 4: Modified hypotrochoid equation. 
           for hypotrochoid curve. 
 

 
Conclusion and Future Work 

  
In our research, we found that the “epicycle” approach to creating large-scale, high-powered laser 
projections of epitrochoid, hypotrochoid, epicycloid, and hypocycloid curves works very well.  The math 
is easily replicated in computer code and electrical circuits.   The overall flexibility and simplicity of the 
approach is refreshing. Future work will concentrate on software enhancements and reduced hardware. 
Laser images and art created this way can be seen on http://spot.colorado.edu/~lessley/.    
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