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Abstract 
 

Doyle spiral circle packings are described. Two such packings illustrate some of the properties of the 
packings in general, with some of the mathematics needed for their construction. Each of these two packings 
is the basis for a short animation. The first uses self-similarity to make endless zooms by repetition of a 
short sequence. The second animation is composed of short sections using the circle packing in different 
decorative forms. A visual aid to approximation is described. 

 
 

Doyle Spirals and Circle Packings 
 
Doyle spirals [4] are the basis for a family of circle packings each of which covers the plane. They have a 
number of characteristics: for example, each circle touches six others, and the centre of each circle lies at 
the intersection of three logarithmic spirals that have a common origin at the centre of the configuration, 
referred to here as the spiral centre. These properties and others can be seen Figures 1 and 2. 
 

 
Figure 1: Doyle Spiral Circle Packing p1 = 2, p2 = 10 and Q = 12. 

 
The circles extend indefinitely outwards across the plane with ever increasing radii, and with ever 

decreasing radii inwards towards the spiral centre. Each packing can be seen as based on a set of equally 
spaced logarithmic spirals in three ways. In each view every circle lies on just one spiral arm, as shown in 
Figure 2. The term spiral arm refers not just to the spiral line that passes through the circle centres but to 
the set of circles. Within a view, two spiral arms are congruent if their circles have the same sequence of 
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radii. Otherwise they are similar and the sequences of radii differ by a scaling factor. The six neighbours 
of a circle are in three pairs, each pair on the same spiral arm. 
 

In general the three views of a packing have a different number of arms: the exceptions are explained 
below. In each packing each circle lies on three spiral arms, one from each view. These triple intersections 
of the spirals at the circle centres are their only intersections. For each view, the ratio of the radii of any 
two adjacent circles on the same spiral arm is constant. Each packing can be identified uniquely by the 
numbers of spiral arms in its three views, and these are denoted by the P, Q values, as shown in Figure 2. 
 

 
           2 Spiral Arms                     10 Spiral Arms                    12 Spiral Arms 

Figure 2: Three Views of the Packing p1 = 2, p2 = 10 and Q = 12. 
 

Q is the number of arms with the least curvature and Q > 2. 
 

P = (p1, p2) where 0 ≤ p1 ≤ Q / 2 ≤ p2 ≤ Q and p1 + p2 = Q, so that p2 is dependent on Q and p1. 
 

Except when p1 = p2 or p1 = 0, p1 is the number of arms with greatest curvature, and the p2 spirals are 
in the direction counter to the other two sets. 
 

The sets of P, Q values correspond one to one with the Doyle circle packings. The primary direction 
of all spirals considered here is clockwise. If differing values of p1 and p2 are interchanged, so that p1 > p2, 
a mirror image of the whole packing results. The straight lines that appear when p1 = p2 can be seen as the 
threshold between these two mirror worlds. 
 

When p1 = p2 = Q / 2, as in Figure 4, the Q spirals become straight lines – in this case the axes – and 
the other two pairs are mirror images of each other, with the same curvature. 
 

When p1 = 0 and p2 = Q, the p1 spiral does not disappear but becomes a set of concentric circles 
around the spiral centre. The other two sets are again mirror images. 
 

When p1 and p2 have no common factor with Q, no spiral arms are congruent and every circle in the 
packing has a different radius. When p1 divides Q, there are p1 congruent spiral arms equally spaced 
around the spiral centre. Consequently every circle is in a set of p1 circles with the same radius. The two 
spiral arms shown in Figure 2 illustrate this property. In the remaining cases, where p1 and Q have a 
common factor less than p1, I conjecture that their highest common factor is the number of congruent 
spiral arms and the number of circles having the same radius. This is true for the other two views in Figure 
2. Figure 3 shows the pairs of congruent spiral arms for the views with 10 and 12 spiral arms. It would not 
be useful to show the case with two spiral arms as they are a congruent pair and so all the circles would be 
filled with the same shade. 
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These are my own observations. More of the mathematics of the Doyle spiral packings is given in [1, 

2, 3, 4, 5]. Weeden [6] has studied the Doyle spirals extensively and I am grateful for access to his 
unpublished papers and for his unstinting help. I prefer the form of P, Q notation introduced here to that 
used by Stephenson and others which gives only one p value, usually the larger but sometimes the smaller. 
 

 
                                    5 pairs                          6 pairs 

Figure 3: Pairs of Congruent Spiral Arms for p1 = 2, p2 = 10 and Q = 12. 
 
 

An important characteristic of all these circle packings is self-similarity. Each circle in a packing is 
equivalent to any other by scaling and/or rotation. In each packing the ratio of the distance of the centre of 
a circle from the spiral centre to its radius is constant. Other key ratios are between the radii of pairs of 
touching circles. 
 
 

A Simple Packing 
 
For some simpler packings these ratios can be derived by geometry and self-similarity, without reference 
to the spirals. Figure 4 shows part of such a packing, with its spirals. Note that in this case four of the 
spirals have degenerated into straight lines - the horizontal and vertical axes. 
 

 
              Showing Spirals                     The Relationships between Three Circles 

Figure 4: p1 = p2 = 2 and Q = 4. 
 

Figure 4 also shows the relationships between three circles in this packing and the spiral centre, C. 
The radius of the smallest circle can be taken as 1 without loss of generality. The ratio of the distance of 
the centre of a circle from the spiral centre to its radius is s. The expansion factor from one circle to the 
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next larger one is r, so r is the radius of the middle sized circle. The values of r and s can be derived as 
follows. 
 

From the right-angled triangle in Figure 4, r2s2 + s2 = (r + 1)2, which gives s2 = (r + 1)2 / (r2 + 1). 
From the two expressions for the length of the base line r2s = r2 + s + 1, which gives s = (r2 + 1) / (r2 – 1). 
These two expressions for s lead to 2r(r4 – 2r3 – 2r2 – 2r + 1) = 0. Apart from r = 0, which can be ignored, 
this equation has two real roots: φ + √φ and its reciprocal 1 / (φ + √φ) = φ − √φ, where φ is the golden 
ratio, (1 + √5) / 2: interesting roots for such an ordinary looking equation. These values are enough to 
construct the packing. Like others, this packing can also be constructed by reducing radii, working 
inwards towards the spiral centre just as well as by increasing them, and the reciprocal root is the factor 
for this reduction. This duality of increasing and decreasing radii is common to all Doyle packings, so in 
every case there will be a pair of reciprocal roots to the equations for this factor. For other packings with 
p1 = p2 the second equation still holds and an equation more complex than the first can be derived, but an 
algebraic solution to this pair of simultaneous equations may not be possible. 
 
 

A First Animation 
 
The packing with p1 = p2 = 2 and Q = 4 is unchanged on rotation by π / 2 radians (90 degrees) and 
enlargement by a factor of r. This identity can be demonstrated by animating the transformation in n steps 
where each step has rotation by (an additive factor) of π / 2n and increase in size by (a multiplicative) 
factor of r1/n. Mathematically identical packings result. In a computer animation sufficient levels must be 
shown that the largest circles (any part of which lies on the screen), and the smallest visible circles (with a 
radius of a few pixels) are displayed. In the realisation described here four levels, each showing two pairs 
of the packing circles, are enough to ensure this. 40 steps in each quarter turn give reasonably smooth 
animation. The first and last frames are the same, and the sequence can be repeated to give a smooth and 
seemingly endless zoom towards the spiral centre, without ever reaching it: ever changing, ever repeating. 
Six frames from the sequence are shown in Figure 5. 
 

 
Figure 5: A Filmstrip from the First Animation, showing Rotation and Expansion. 

 
The program is written in Visual Basic (VB) and runs in real time within the VB environment. 

Twenty repetitions of the sequence are shown, the only change being a gradual reduction of the delay 
between frames to increase the speed of zoom. A smaller circle (not shown in Figure 5) is drawn inside 
each main circle to give a sense of the circles tuning. More complex rendering of the circles reduces the 
speed of animation until no added delay is needed between frames; beyond that the animation becomes 
too jerky. As the complexity of rendering increases, a point is reached, depending on the power of the 
system, where the rate that can be achieved falls below that needed for smooth animation: roughly 20 
frames per second. Some improvement can be got by compiling the code to run as a .exe file, but that has 
not been done here. For more complex rendering, frames can be saved automatically and loaded into a 
conventional animation package. 
 

An idle loop was needed between most frames of the animations to slow the motion to the speed 
wanted. One sequence in the second animation goes beyond the limit of rendering that can be got with the 
hardware used: a standard laptop. Figure 6 shows a frame from the second animation where the circles are 
given a 3d appearance by filling each one with concentric circles having graduated shades of colour 
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becoming lighter towards the slightly off-centre highlight. This rendering is rapid but becomes a visible 
part of the animation: roughly 20 of the larger circles are rendered per second, more for the smaller 
circles. 

 
Figure 6: A Packing Rendered with Highlights from the Second Animation. 

 
The packing shown in Figure 4 is also unchanged on enlargement by a factor of r2, without rotation. 

A similar animation of an endless zoom forms the second section of this animation. For this 80 steps are 
used in the basic sequence to give smooth movement. Reduction rather than expansion is used so the 
appearance is of zooming out. 
 

The third and last main section of the first animation is based on the first section but with the 
reflection of the image in the vertical axis added. Figure 7 shows a typical frame from this sequence. The 
overlapping of the reflections, rotating in opposite directions, removes any sense of the image zooming. 
At the start of each sequence the original and its reflection are identical, giving a resolution of the more 
complex intermediate frames. To show this more clearly the animation is paused at this point for the first 
few repetitions of the sequence. 

 

 
Figure 7: An Intermediate Frame from the Mirrored Sequence. 

 
This animation could be the basis for a work with a higher ratio of art to mathematics. As a small step 
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in this direction, during the last repeat of the basic sequence in each main section the screen is not cleared 
between frames so that all 40 frames are overlaid, giving the design from the first section shown in Figure 
8. 
 
 

 
Figure 8: Overlapped Frames from the First Animation. 

 
 

A Second Animation 
 
The second animation uses mainly the Doyle packing p1 = 2, p2 = 10 and Q = 12 shown in Figures 1 and 2. 
The roots of the equations, needed for this packing to be constructed, are not known algebraically and can 
only be derived by numerical approximation. The values for the view with two spiral arms were found by 
numerical approximation. Constructions using constants for the views with ten or twelve spiral arms are 
also possible. This animation is more decorative than mathematical. 
 

 
Figure 9: A Frame from the Second Animation. 

 
After the titles, shown over a background of the basic packing, the first section shows twin mirrored 

spiral formations growing to fill the screen. The next section shows the packing as composed of two spiral 
arms. This darkens to near black, and then lightens to show ten spiral arms. After this, a spiral expands 
and then contacts leaving a display of the edges that are not overwritten, as the screen is not cleared 
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between frames. Over this twelve randomly placed smaller spirals expand in different colours and 
orientations (Figure 9). The whole screen is then subject to a sequence of colour changes using XOR. The 
small spirals unwind, and the whole screen is wiped with XOR applied using a different colour on each 
pixel. 
 

A Visual Aid to Approximation 
 
One method used in finding good approximate values for drawing Doyle circle packings is to draw and 
inspect arrays of packings having a range of controlling parameters. A good approximation may not be 
mathematically correct, but it is visually correct at the screen resolution being used. The controlling 
parameters for a packing are starting values and increments from one circle to the next of the distance of 
the centre from the spiral centre and the angle between the lines connecting the centres to the spiral centre. 
In the example array shown in Figure 10 the distance increases left to right and the angle increases down 
the display. The program for this array draws only one spiral arm and so draws approximate packings only 
for cases with p1 = 1. 
 

In Figure 10, the third spiral down the leftmost column is a good approximation for p1 = 1, p2 = 7 and 
Q = 8. It can be refined by running the program again with smaller increments. The packing above it is a 
rough approximation to p1 = 1, p2 = 8 and Q = 9. There is a solution for p1 = 1, p2 = 6 and Q = 7 around 
the lower right of the array. 
 

 
Figure 10: An Array of Approximations. 

 
The ratio of the circle radius to its distance from the spiral centre may also need to be adjusted. This 

is easy to judge visually: when the overlaps or gaps between adjacent circles are consistently in proportion 
a change to the radius ratio can be made so that adjacent circles touch. 
 
 

Incidental Graphics 
 
Several still images have resulted from this work, some by accidents such as programming errors: Figure 
11 shows an example. Some of these will be shown in the presentation, along with the animations. 
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Figure 11: An Accidental Graphic. 

 
 

Last Thoughts 
 
In the space of graphic arts based on mathematics, one dimension runs from visualisation of mathematical 
properties to the decorative use of mathematically derived patterns. The two animations described here are 
toward the opposite ends of this dimension. The first animation illustrates the self-similarity of Doyle 
packings and visual effects arising from it. The second is more decorative. The movement of circles in the 
animations is only along the spiral that their centres lie on – sometimes the special case of a straight line. 
But every circle in a packing can be transformed into any other by scaling and rotation about the spiral 
centre. The animation of such a general transformation is a likely development from the current work. 
 

Doyle spiral circle packings are a rich resource for mathematical art and I hope that others will be 
encouraged to investigate and use them further. 
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