

Imaginary Gardens
A Model for Imitating Plant Growth

Anne M. Burns

Mathematics Department
Long Island University, C.W. Post Campus

Brookville, NY 11548, USA
Email: aburns@liu.edu

Abstract

 A simplified version of the use of L-Systems as a method of modeling plant growth is described. We do not

insist on the accuracy of the models; instead we focus on producing aesthetically pleasing imitations of plants
that can be used in creating computer-generated landscapes.

1. Introduction

 I have always been fascinated by the beauty of plants and
flowers, and ever since I bought my first home computer I
have searched for ways to imitate the structure and growth
patterns of plants using ideas from mathematics and
computer science. At first my “plants” were stick figures
made up of straight lines for branches and discs for
flowers; the screen resolution was 320 by 200, and there
were only three colors available. Gradually, as the
capabilities of the computers improved, so did my plant
models. The sticks became curved rendered tree branches
or plant stems and the disks became intricate
inflorescences. Along the way I searched out articles
suggesting new methods of generating plants. In the late
1980’s a number of computer scientists presented new
ideas for modeling plant growth and several presentations
were made on this topic at SIGGRAPH conferences. I was
not so much interested in the accuracy of the models, but
more in the aesthetic possibilities for artistic works. Also,
I am a teacher, and this was an exciting new way to get
students interested in math. It makes a great topic for a
class in computer science. For a comprehensive list of

 papers that deal with the theory of string rewriting, formal Figure 1: An interpretation of Example 3
 languages and L-Systems see the references.

 In this paper I will present my own simplified adaptation of this method of modeling plants that
can be used in a class in programming. Processing the strings is a real live application of a stack and its
implementation. Writing functions that draw curves and leaves and flowers gives students the
opportunity to use some elementary trigonometry and algebra.

mailto:aburns@liu.edu

2. L-Systems and String Rewriting

 A biologist from the University of Utrecht, Aristid Lindenmayer, using ideas from formal language
theory, conceived of a method for modeling the structure and growth of plants by generating new
character strings from existing ones by replacing one or more characters in a string by strings of
characters in a parallel manner. Here is a simple example (a formal definition can be found in the
references): We start with a single character which we call the axiom, and a set of rules which we call
productions. Each production has a left side and a right side. In our first examples we will make the left
side of each production a single character and the right side a string of characters. A plant will be
associated with a string of characters that initially will consist of a single character, the axiom. To get to
the next stage in the plant’s development we will traverse the string of characters from left to right.
Whenever we encounter a character that is the left side of a production, we replace that character by the
right side of that production. By convention, when we encounter a character that is not the left side of
any production we replace that character by itself.

Example 1. Our alphabet will consist of the set of characters {I, [,] , (,)} and the axiom will be the
character I. Our L-System will have one production: I → III This is what our string will look like
after one and two stages:
Axiom: I
Stage 1: III, Stage 2: I[III](III)III
At stage 3 the string will consist of 148 characters!

Figure 2: Stages 1 – 5 of a simple example, Example 1

 Now let us give a geometric interpretation to this string. We write a computer program and in it we

write a function plant with parameters stage, x, y, angle, length. Executing this function, plant(stage, x0,
y0, π/2, 10), will result in the following steps: the initial point will be set at x0,y0 and a variable angle
will be set to π/2. A variable length will be set to 10/stage. The string will be traversed from left to
right one character at a time. Each time I is encountered the function will draw a line segment of length
length at the current angle angle. When either [or (is encountered, the variables x, y and angle will be
“pushed” onto a stack (their current values will be saved) and if the character is [the variable angle will
be increased by some small angle (for example π/3), if the character is (the variable angle will be
decreased by some small angle. That is, we interpret [as a branch to the left and (as a branch to the
right. When a] or) is encountered the old values of x, y and angle are “popped”off of the stack, that is,
the parameters that existed before we branched off are recovered. Figure 2 shows this interpretation of
several stages of Example 1.
 Figure 1 is a second example of a very simple L-system: Axiom I and one production:

I → I[IL[I[IF]]](ILF)I. Here two new characters have been added to our alphabet, “L” which we
interpret as a “leaf” and “F” which we interpret as a “flower”. We also added some curvature to the line
segments.

 Figure 3. Three “plants” generated by the same Stochastic L-System

 We can make our plant growth less predictable by using probabilities in what we might call a
“Stochastic L-System”. Figure 3 shows three “plants” resulting from a single L-System. In a stochastic
L-System we allow two or more productions to have the same left side (I) but different right sides. In
Figure 3 we have used two productions with left side I. The first production has the same right side as
the L-System in Figure 2, "I[I][I]I", and the second has right side "I(I)(I)". In general if we have n
productions with the same left side we assign a probability (from nonnegative numbers p1,…,pn whose
sum is 1) to each production. In the subroutine that replaces the old string with the new, when we
encounter an “I” we generate a random number between 0 and 1. This number will determine which of
the productions we use. In Figure 3 p1 = .45 and p2 = .55.

3. More Realistic Looking Plants

 Figure 4a. A “conifer” Figure 4b. “Fuzzy tree”

 Rules for Figure 4a:
 I → IAB
 A→ A[B]
 B → BBBB
 Axiom = I

 Rules for Figure 4b.
 I → IIAB
 A → A(B)[B]
 B → A[B]B(B)B
 Axiom = I

I wanted to design a tree that looked like a conifer with needles instead of leaves. So in Figure 4a you
can see the third production has a string containing many B’s which I interpreted as very short thin line
segments. Figure 4b is an accidental result of experimenting with the rules in Figure 4a. You can see
that the rules are quite similar. But in Figure 4b I assigned a very large angle of curvature to the
interpretation of the segment A, which caused each segment to make a full circle rather than a branch. I
liked the effect, so kept it in my gallery. (Notice that both trees could use a haircut!)

4. Evolution of Inflorescences

The botanist C.L. Porter in his book [2] presents simple diagrams of some of the more common
inflorescences and their method of compounding. When I first saw them I thought what fun to write a
computer program that draws them! We will illustrate how to use string rewriting to generate five of the
common inflorescences.
 “An umbel is an inflorescence having several branches arising from a common point at the
summit of the peduncle. If these branches end in flowers we have a simple umbel; if they end in
secondary umbellets we have a compound umbel” [2]. Using just the letter I to represent a line segment,
and [] (enclose a branch to the left), and () (enclose a branch to the right), let us make a first attempt at
an umbel structure minus the flowers:

 Stage 1 Stage 2 Stage 3 Stage 4

Figure 5. Umbel sans flowers. Axiom: I Production: I → ((I))(I)[(I)][I][[I]]

 Stage 1 Stage 2 Stage 3 Stage 4
Figure 6. Adding flowers to the end of each branch. Axiom: I Production: I → ((IF))(IF)[(IF)][IF][[IF]]

 To make the umbel more realistic, we have to use more
 symbols than just I and F. We need to add some curvature
 to the stems and some randomness to the length and the
amount of curvature of each stem. Adding curvature is
relatively easy. We use the function that draws a line
segment taking parameters x,y, angle, length, thickness and
color and which returns the new endpoint (x,y). Define a
new function curve with the same parameters but add one
more parameter curvature. The new function is very
simple; divide the parameter length by some n > 1 and use
the function segment to draw n small segments, each time
increasing or decreasing the angle parameter by the
curvature angle. As the drawing angle will change during
the execution of this function it should return the current
angle as well as the current value of x and y.
 Figure 7 shows the result embellished by a stem
with compound leaves that have been created by almost the
exact set of rules that defined the flower, except, as you
can see, at each stage there is a division into 3 rather than 5.

 Figure 7 Family umbellifereae

 “A monochasium is a peduncle bearing a terminal flower and, below it, one branch that produces

a single lateral flower. The terminal flower is older. This is a simple monochasium . A repetition of this
on the lateral branches produces a compound monochasium.” [2] See Figure 8.

 Stage 1 Stage 2 Stage 8 Stage 12
 Figure 8. Rules for a monchasium: I → I, A → I(A)B , B → B , Axiom: A

 “A dichasium is a peduncle bearing a terminal flower and a pair of branches that produce lateral
flowers. The oldest flower is the central one. This simple dichasium is a common unit making up parts
of many more complex inflorescences. A repetition of this on a lateral pair of branches produces a
compound dichasium.” [2] See Figure 9.

Rules for a dichasium: A→ IAB, axiom: A

I is interpreted as a line segment, A as a line segment topped by a small flower, and B a longer line
segment topped by a larger flower.

 Stage 1 Stage 2 Stage 3 Stage 5
Figure 9. Stages in the development of dichasia

 “A panicle is a more or less elongated inflorescence with a central axis along which there are
branches which are themselves branched. These may be a sequence of blooming from the base upward,
but some panicles are made up wholly of dichasia.” [2] See Figure 10.

 Stage 1 Stage 2 Stage 3 Stage 4
 Figure 10. Rules for a panicle: I → A[IF]A(IF)IF, axiom I

5. Let the Clock Tick – Parametric L-Systems

We can keep a clock ticking and allow variables to represent the time stages in the plant’s growth. For a
given left side of a production we can have more than one right side; the particular one chosen will depend
on the value of t. To illustrate this idea here is a simplified version of a flowering sequence where the
flowers mature earlier on the lower branches. In this example the axiom is I and we let t represent the stage,
that is at t = 0 the string consists of the axiom I.

The productions are:
I → A[B]I for t ≤ 2
I → AB for t = 3
B → Af(0)
f(n) → f(n+1) for n ≤ 2
f(3) → ε (the empty string

 I A B f(0) bud f(1) flower f(2) fruit f(3) seedpod

Figure 11. Representation of string characters for a parametric L-System

Figure 11 shows the representation of each of the characters in the string. (If you are a teacher,
note that writing the routines that draw each of the figures involves a little math as well.)

 Stage 1 Stage 2 Stage 3 Stage 4

 Stage 5 Stage 6 Stage 7 Stage 8

Figure 12. 8 stages in the parametric L-system

Figure 12 illustrates the flowering sequence and life cycle of the “reproductive organs” of the
plant.

Conclusion

String rewriting can be taught to students as a way to generate interest in mathematics and
computer programming. Space constraints have allowed me to present only a very simple
introduction to this exciting topic. For an excellent explanation of the rules that describe plant
development, modeling of cellular layers and fractal properties of plants I highly recommend
Prusinkiewicz’ beautiful book [3]. Some of the other references are more mathematical and contain
a wide variety of applications of formal language theory, L-Systems and string rewriting.

Figure 13. Imaginary garden

References
[1] Anne M. Burns, The Flowering of String Rewriting Systems, The College Mathematics
Journal, Vol. 23, No. 3, May 1992
[2] C.L. Porter. Taxonomy of Flowering Plants, W.H. Freeman and Co., 1959
[3] Przemyslaw Prusinkiewicz and Aristid Lindenmayer, The Algorithmic Beauty of Plants,
Springer-Verlag, 1990
[4] G. Rozenberg and A. Salomaa (Eds.), Lindenmayer Systems, Springer-Verlag, 1992
[5] G. Rozenberg and A. Salomaa (Eds.), The Book of L, Springer-Verlag, 1986
[6] Arto Salomaa, Formal Languages, Academic Press, 1973
[7] Alvy Ray Smith, Plants, Fractals and Formal Languages, Computer Graphics, 19, 3 (July
1984)
[8] http://en.wikipedia.org/wiki/L-system

