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Abstract 
This paper presents the mathematics and history behind the three artwork plates which have been created for display at 
the Bridges Mathematical Art Exhibit in San Sebastian, July 2007. Their construction serves to complement activities 
designed to promote the subject of geometry in the mathematics curriculum of colleges and universities.  

1. Introduction 
In a traditional synthetic geometry course we are introduced to rigorous treatment of axiomatic systems.  
During this process we become acquainted with historical and philosophical implications of various 
discoveries in Euclidean and non-Euclidean geometries. In addition, as a part of reasoning or as a 
mathematical challenge, we learn how to make geometric constructions using a compass and straightedge.  

Geometric constructions and the logic of the steps bring excitement while challenging our intelligence 
to justify the steps to reach a conclusion. 

Geometric constructions have formed a substantial part of mathematics trainings of mathematicians 
throughout history. Nevertheless, today we are witnessing a lack of attention in colleges and universities 
to the importance of geometric constructions and geometry as whole, including the role of the axiomatic 
system in shaping our understanding of mathematics.  A quick survey reveals that many schools offer a 
mathematics undergraduate curriculum without geometry, or offer geometry as an option along with other 
courses in traditional mathematics. Nowadays students may obtain a bachelor in mathematics in some 
tracks without taking geometry! 

The goal of this article is to explore the mathematical ideas in three presented artwork plates at the 
2007 Bridges Mathematical Art Exhibit, and to provide historical background.  The hope is by visual and 
artistic presentation of such constructions we may promote the importance of geometry in shaping our 
education. We hope such activities encourage schools and academia to bring back the subject of geometry 
to their center of mathematics education.  

2.  Compass, the Perfect Maker! 
As a mental activity and challenge, and also to follow a principle in mathematics to purify a mathematical 
process from unnecessary steps and assumptions, Greeks set limits on which tools should be permitted to 
construct geometric shapes. They considered only compass (circle creator) and straightedge (line creator) 
as essential tools to perform and present geometric ideas. (It is interesting to know that in 1979, an Italian 
professor, Lorenzo Mascheroni, proved that all the problems that are soluble by means of compasses and 
ruler can also be solved exactly by means of compasses alone.  In 1890 A. Adler proved this statement in 
an original way, using inversion.  However, later in 1928, the Danish mathematician Hjelmslev found an 
old book by G. Moher published in 1672 in Amsterdam that included a full solution of the problem [1]). 

Much earlier, during the reigns of Abbasid caliphs in Baghdad, and under Buyid rule, the Greek 
mathematical tradition was explored by mathematicians in Persia, as well as in the rest of Middle East, 
the Iberian Peninsula, and North Africa.  All of the Greek texts were translated and studied by Arab and 



Persian mathematicians and scientists in the Abbasid Empire. They also created their own texts, to be 
translated along with the Greeks documents in Arabic, to European languages during Renaissance and 
later periods. 

The Greeks ideal of a compass and straightedge for constructions was the use of compasses that 
cannot be fixed to be used as dividers to transfer a line segment around. This turns out to be not an 
essential restriction: 

2.1. Collapsing Compass.  The compasses used in ancient Greek geometry had no hinges.  Therefore, it 
was impossible to fix a compass on a certain distance in order to transfer this distance to another location.  
Geometric drawings were performed on sand trays.  As the compasses were raised from the sand trays 
they collapsed.  Today, these compasses are called collapsing compasses. 

Consider that AB  and a point outside of AB , call it C, 
are given.  The problem is to find another point, call it D, 
using a collapsing compass, so that AB ≅ CD . 

This problem simply says that it is possible to transfer a 
distance using a collapsing compass. Mathematically 
speaking, it says that whatever one can do with a regular 
compass is possible to do with a collapsing compass; 
therefore, a modern compass is not superior to a collapsing 
one! 

We begin by drawing a circle with center A and 
radius AC .  Then, we draw another circle with center C 
and radius AC .  These two circles meet at points E and 
F. Draw a circle with center E and radius EB and a 
circle with center F and radius FB . These two circles 
meet at a point, call it D. AB ≅ CD  (Figure 1)!                                            Figure 1 
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2.2. Rusty Compass.  It is interesting to learn that the opposite extreme to the collapsing compass is 
called the rusty compass, a compass that is rusted into one unmovable radius, has much longer and more 
exciting story: 

The study of the rusty compass goes back to antiquity.  However, the name most associated with this 
compass is Buzjani.  Abûl-Wefâ Buzjani (940-998), was born in Buzjan, near Nishabur, a city in 
Khorasan, Iran. He learned mathematics from his uncles and later on moved to Baghdad when he was in 
his twenties.  He flourished there as a mathematician and astronomer.   

The Buyid dynasty ruled in western Iran and Iraq from 945 to 1055 in the period between the Arab 
and Turkish conquests. The period began in 945 when Ahmad Buyeh occupied the 'Abbasid capital of 
Baghdad. The high point of the Buyid dynasty was during the reign of 'Adud ad-Dawlah from 949 to 983. 
He ruled from Baghdad over all southern Iran and most of what is now Iraq. A great patron of science and 
the arts, 'Adud ad-Dawlah supported a number of mathematicians and Abu'l-Wafa moved to 'Adud ad-
Dawlah's court in Baghdad in 959. Abu'l-Wafa was not the only distinguished scientist at the Caliph's 
court in Baghdad, for outstanding mathematicians such as al-Quhi and al-Sijzi also worked there.   Sharaf 
ad-Dawlah was 'Adud ad-Dawlah's son and he became Caliph in 983. He continued to support 
mathematics and astronomy and Abu'l-Wafa and al-Quhi remained at the court in Baghdad working for 
the new Caliph. Sharaf ad-Dawlah required an observatory to be set up, and it was built in the garden of 
the palace in Baghdad. The observatory was officially opened in June 988 with a number of famous 
scientists present such as al-Quhi and Abu'l-Wafa [2]. 



Buzjani’s important contributions include geometry and trigonometry. In geometry he solved 
problems about compass and straightedge constructions in the plane and on the sphere.  Among other 
manuscripts, he wrote a treatise: On Those Parts of Geometry Needed by Craftsmen. Not only did he give 
the most elementary ruler and rusty compass constructions, but Abûl-Wefâ also gave ruler and rusty 
compass constructions for inscribing in a given circle a regular pentagon, a regular octagon, and a regular 
decagon [3]. 

Until recently it was thought that the study of the rusty compass went back only as far as Buzjani. A 
recent discovery of an Arabic translation of a work by Pappus of Alexandria, the last of the giants of 
Greek mathematics, shows that the study of the rusty compass has its roots in deeper antiquity [3]. 

Italian polymath Leonardo da Vinci, Italian mathematicians of sixteen century Gerolamo Cardano, his 
student Lodovico Ferrari, and Niccolò Fontana Tartaglia studied construction problems using rusty 
compasses.  

The Russian mathematician A. N. Kostovskii has shown that restricting the compass so that the radii 
never exceed a prescribed length still leads to all compass constructible points, as does restricting the 
compass so that the radii always exceed a prescribed length. However, the problem of restricting the radii 
between a lower bound and an upper bound seems to be still open [1].  

Kostovskii showed that by means of a rusty compass one cannot divide segments and arcs into equal 
parts or find proportional segments.  Thus, it is impossible to solve all construction problems, soluble by 
means of compasses and a ruler, using only compasses with a constant opening [1]. 
 

3. Buzjani’s Rusty Compass Pentagon Construction 
There are four known hand-written copies of the Buzjani’s treatise, On Those Parts of Geometry Needed 
by Craftsmen.  One is in Arabic and the other three are in Persian. The original work was written in 
Arabic, the scientific language of the 10th century, but it is no longer exists.  Each of the surviving copies 
has some missing information and chapters.  The surviving Arabic, although not original, is more 
complete than the other three surviving copies. The Arabic edition is kept in the library of Ayasofya, 
Istanbul, Turkey. The most famous of the other three in Persian is the copy which is kept in the National 
Library in Paris, France. This copy includes an amendment in some constructions, which are especially 
useful for creating geometric ornament and artistic designs.  This is the copy used by Franz Woepke 
(1826-1864), the first Western scholar to study medieval Islamic mathematics. 

In Chapter Three of the treatise, Regular Polygonal Constructions, Buzjani, after presentation of 
simple constructions of the equilateral triangle and square, illustrates the compass and straightedge 
construction of a regular pentagon.  The fourth problem is the construction of a regular pentagon using a 
rusty compass.  To present this problem we use a recent book published in Persian that includes all known 
Buzjani’s documents, Buzdjani Nameh [4]: 

We would like to construct a regular pentagon with sides congruent to given AB , which is 
the same size as the opening of our rusty compass.  From B we construct a perpendicular to 
AB (This is simple, therefore, Buzjani didn’t perform it) and find C on it such a way that  
AB ≅ BC .  We find D the midpoint of AB (another simple step dropped from the figure) 

and then S on DC such a way that AB ≅ DS .  We find K, the midpoint of DS .  We make a 

perpendicular from K to DC to meet AB at E.  Now we construct the isosceles triangle 

AME such a way that AB ≅ AM ≅ EM .  Now on ray BM we find point Z such a way 
that AB ≅ MZ .  Δ AZB is the well-known Pentagonal Triangle (Golden Triangle).  On 



side AZ construct the isosceles triangle AHZ the same way as the construction of AME.  
Point T will be found with the same procedure. 

  
               (a)                (b)  
Figure 2: (a) Detailed Construction of a regular pentagon using a rusty compass, (b) A Persian mosaic 
design that inspired the work in Figure 3. 
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igure 3: (a) The artwork in Plate I which is created by the author using the Geometer’s Sketchpad, (b) 
The geometric structure of the mosaic design, constructed based on a regular (10, 3) star polygon [5]. 
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Woepcke [4] presents the following proof:   

It is obvious that ∆ KED ≅ ∆ BCD.  Therefore, ED ≅CD .  This implies ED 2≅ BC 2 
+ BD 2 ≅ BD 2.  So AB 2 ≅ ED 2− BD 2 ≅ AE . BEAB 2 +  (This means B is the Golden cut 
of AE ).  Therefore, AE  is congruent to the diagonal of the regular pentagon with side AB  
(see Theorem 8, Chapter 13, The Elements, Euclid). (It is also congruent to the legs of the 
Golden Triangle with the base AB ).  Now what is left to prove is to show 
that BZ AZ ≅ AE .  For this, we consider P on AE ⊥ AE such a way that MP .  Then ≅

MB 2 2 ≅ME 2− BP − EP 2 ≅EA . EB − EP 2 ≅ 2 ( EB + BP ) EB −( EB + BP )2 ≅ EB 2− BP 2 

.  So AE ≅ AB + EB ≅ AB ≅ MZ + MB ≅ BZ . MB ≅ EB + MB.  This implies

Since ∆ BME and ∆ MAE are isosceles, we have ∠ZBA ≅ 2∠ MEB ≅ 2∠MAB.  Also, 
since ∆ MAB are isosceles, we have ∠ZBA ≅ ∠AMB and therefore, 

∠ MAB ≅ ∠MAB + ∠ ∠ZAB.  Hence 
and ∆ MAZ  ≅ 2∠MAZ 

MAZ ≅ ∠MAB ≅ ∠MAZ, and ∠ZBA ≅ 2
AZ ≅ BZ ≅ AE and the proof is complete.  

 
4. A Plate for the Memory of Gauss 

During October 2003 a call for entries to an art and design competition was posted by the Mathematical 
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 author of this article participated in this competition with the artwork presented in Figu
ut success.  However, the work provided the artwork for the second plate presented at th
t.  Along with the design, the author submitted the following note to members of the jury: 

The Al

nstruct regular polygo
raightedge alone.  The list of other const

known to them included the 15-gon and any polygon with twice the number of sides as a given 
constructible polygon.  No matter how much effort, mathematicians until 1796 were not 
successful in constructing a regular heptagon by compass and straightedge, nor were they 
successful in proving the construction is impossible.   

After a period of more t
the impossibility of its construction.  In fact, he proved that in general, construction of a regular 
polygon having an odd number of sides is possible when, and only when, that number is either a 
prime Fermat number, a prime of the form 2k + 1, where k = 2n, or is made up by multiplying 
together different Fermat primes.  Such a construction is not possible for 7 or 9. 

2^2^2+1 = 17 is a Fermat Prime! 



Gauss first showed that a regular 17-gon is constructible, and after a short period he completely 
solved the problem.   

Rosebud and Citizen Kane? 

It was this discovery, announced on Ju on March 30th, which induced the 

 Regular 17-gon? 

ne 1, 1796, but made 
young man to choose mathematics instead of philology as his life work. He requested that a 
regular 17-sided polygon to be engraved on his tombstone.  This shows that for all his 
contributions, which place him in the circle of three of the world’s all-time great mathematicians, 
Gauss chose his first discovery, a simple 17-gon construction, to identify himself.  A wish that 
was never fulfilled. 

How to Construct Such a

To create a regular 17-gon, we select two random points O and A1, and construct a circle with 
center O and radius 1OA . We find B on this circle in such a way that OB becomes perpendicular 

to OB such that OC is one-quarter ofOB .  Point D on 11OA .  We find C on OA can be found in 
such a way that ∠OCD is one-quarter of ∠OCA .  We find E on line OA such th1 1 at ∠ECD = π/4.  
Construct the circle with diameter OB at1EA . This circle intersects  F.  The circle centered at D 

1OA at two points G and H.  The and through F intersects the diameter constructed based on 

1OAperpendiculars to through G an le at A4 and A6 (and also A13 and 
A ).  We can find A , the point that bisects the c A A divides the circle into 17 
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or more information about this geometric construction, the interested reader may visit the intern
urces provided at the end of the References section. 
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Figure 4: (a) The construction of the regular 17-gon, (b) The artwork of the second plate created by 

the author using the Geometer’s Sketchpad 



5. A Medieval Approximation to the Regular Heptagon Construction 
Let us return to Buzjani’s treatise, On Those Parts of Geometry Needed by Craftsmen, to find an 
approximation to the construction of the regular heptagon.  For this, we present the image and the 
constructions’ steps to this problem according to [6].   

Figure 5(a) is from this book.  Figure 5(b) – (f) illustrate steps that are taken in Figure 5(a):  Side AB  
of the heptagon is given.  We find point C such a way thatCA≅ AB .  We construct the 
equilateral triangle with side CB and its circumcircle.  We find point H on this circle so 
that HB .  After finding the midpoint M we find N on the circle such a way that NM ⊥HB≅ AB .  
We then find O, the midpoint of AB and construct PO such a way that PO≅ NM and PO⊥ AB . 

ntioned The circle that passes through the three points A, B, and P, which is congruent to the me
circumcircle, is the circle that circumscribes the regular heptagon with side AB .      

If the radius of the inscribed circle is 1, then = 3AB /2 ≈.8660. The exact measure of one side of a 
heptagon is 2 Sin π/7 ≈.8678.  That is the reason that even a modern software utility such as the 
Geometer’s Sketchpad can not pick up the error.  

The treatise does not indicate whether or not the author knew that his construction was an 
approximation and ut Buzjani and his thorough 
study of geometry of his time, which included all the geometry produced by Greeks, we may conclude 
tha

 

 not an exact construction.  Based on what is known abo

t he was aware of this fact.    

 
  

 
 

(a) 
 

A BC

(b) 

A

H

C B

(c
 

) 

   
P

N

M
H

A BC

PN

 
(d) 

O

M
H

AC B

N

O

M
H

A BC

 
 (e) 

 
(f) 

 
Figure 5: (a) The construction of the heptagon, (b)-(f) The steps of the construction. 



            
 

(a)                                               (b) 
Figure 6: (a) A (7, 2) star polygon Persian mosaic and, (b) the generated art based on the Buzjani’s 
approximation of heptagon, the writings on the edges repeats the name of Buzjani in Farsi. 

Conclusion 
Poincaré s studies it 

in it because it is beautiful [7].  

ic pleasure in a manner that mathematicians need 
challenge, and mental exercise.  By appropriate uses 

the new generation of mathematicians should be introduced to the 

a joint project of the author and the Bridges Mathematical 
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