
Modeling D-Forms
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Abstract
In this paper, we present a computational method for modeling D-forms. These D-forms can directly be designed
using our software. We unfold designed D-forms using a commercially available software. Unfolded pieces are later
cut using a laser cutter. We obtain the physical D-forms by gluing the unfolded paper pieces together. Using this
method we can obtain complicated D-forms that cannot be constructed without a computer.

1 Introduction

Developable surfaces are particularly interesting for sculptural design. It is possible to find new forms by
physically constructing developable surfaces. Recently, very interesting developable sculptures, called D-
forms, were invented by the London designer Tony Wills [22] and first introduced by John Sharp to the art
and math community [18]. D-forms are created by joining the edges of a pair of sheet metal or paper shapes
with the same perimeter [18, 22].

Despite its power to construct unusual shapes easily, there are two problems with physical D-form con-
struction. First, the physical construction is limited to only two pieces. It is hard to figure out the perimeter
relationships if we try to use more than two pieces. The second problem with D-form construction is that
until we finalize the physical construction of the shape we do not exactly know what kind of shape will be
obtained.

Figure 1: Three views of a D-form constructed using our method starting from a dodecahedron. This shape is
designed using our software by Ergun Akleman. This D-form consists of two pieces. The computer designed
and unfolded versions of this D-form are shown in Figure 8. Jonathan Penney combined the unfolded pieces
to create final physical D-forms.

In this paper we introduce a computation method that provides an alternative to physical D-form con-
struction. Our implementation allows the user to design D-forms directly in software. Our D-forms can



consist of more than two pieces (see Figure 8). Another advantage of our method is that the user can vi-
sualize the final shape before physical construction of the shape. Our computer-designed D-forms can be
unfolded using Pepakura, a commercially available polygonal unfolding software [21]. Once unfolded, the
pieces can be cut using a laser cutter and glued together to create physical D-forms. Using this method we
have also created new D-forms that were not known before.

Two pieces Three pieces Four pieces

Figure 2: Three D-forms constructed using our method starting from a dodecahedron. The top row shows
computer generated D-forms. The second row shows unfolded versions of the same D-forms. Note that each
of these D-forms are different. The one on the left consists of only two pieces. The one in the middle consists
of three pieces and the one on the right consists of four pieces.

2 Previous Work

In architectural and sculptural modeling, we want eventually to construct the shapes that we have designed.
The recently introduced concept of conical meshes [12] provides a framework to model constructible shapes.
In this paper we introduce a method to design D-forms with conical meshes using valence-3 planar meshes.
Since valence-3 planar meshes always guarantee conical mesh property, the shapes created by using our
methods can physically be constructed.

Planar meshes are useful for surface representation. A planar mesh is said to have conical property if
and only if all vertices in the polygonal mesh have the property that offsetting all the face planes incident
with the vertex by a constant distance leads to planes which intersect again in a common point [12]. This is
equivalent to the property that the planes, consistently oriented via the connectivity of the mesh, are tangent
to an oriented cone of revolution. The most common planar meshes in computer graphics, triangular and
quadrilateral meshes, do not guarantee conical property. Wallner [12] introduced a method for approximating
smooth surfaces with valence-4 planar quadrilateral meshes that satisfy conical property. In this paper, we
propose a tool to directly model D-forms with conical property by using only valence-3 vertices. Valence-3



vertices are very common in nature. The set operations over randomly oriented valence-3 planar meshes
usually result in valence-3 planar meshes. Valence-3 structures are observed in natural formations such as
rocks, trees, any type of cracks on planar surfaces and even on crumpled paper. One use of valence-3 planar
meshes is to approximate developable surfaces with planar strips.

Developable surfaces are defined as surfaces on which the Gaussian curvature is 0 everywhere [20].
Developable surfaces are useful since they can be made out of sheet metal or paper by rolling a flat sheet of
material without stretching it [15]. Most large-scale objects such as airplanes and ships are constructed using
un-stretched sheet metal. In ship or airplane design, the problems usually stem from engineering concerns
and in engineering design there has been a strong interest in developable surfaces. For instance, modeling
packages such as Rhino provide developable surface analysis [15, 16].

Although it is easy to physically construct developable surfaces using sheet metal or paper, it is not
that easy to provide computational models to represent developable surfaces. Sun and Fiume developed a
technique for constructing developable surfaces [19], but their method is useful only to represent ribbons
and is hard to use to represent general developable surfaces. Chu and Sequin introduced developable Bézier
patches [7]. Haeberli recently introduced a method to represent a shape with piecewise developable surfaces
and implemented it in his Lamina Design Software [11]. The current results seem to be limited but Hae-
berli’s approach has great potential for developable surface design. Mitani and Suzuki introduced a method
to approximate any given shape using developable surfaces to create paper models [13]. Because of the
approximate nature of their models, there exist gaps between individual pieces and therefore, their method
is not suitable for engineering application.

Developable surfaces are frequently used by contemporary architects to design new forms. However, the
design and construction of large-scale shapes with developable surfaces requires extensive architectural and
civil engineering expertise. Only a few architectural firms such as Gehry Associates have been able to take
advantage of the current graphics and modeling technology to construct such revolutionary new forms [9].
Gehry Partners and Schlaich Bergermann and Partners [10] argue that freeform glass structures with planar
quadrilateral facets are preferable over structures built from triangular facets or non-planar quads and also
show a few simple ways to construct quad meshes with planar faces.

One of the main usages of planar meshes is in developable surfaces, represented by an arrangement
of thin planar quadrilaterals in a single row. In particular, D-forms can be approximated using thin planar
quadrilaterals with valence-3 vertices. The research community has also been exploring D-forms. For in-
stance, Pottman and Wallner introduced two open questions involving D-forms [14, 8]. Sharp introduced
anti-D-forms that are created by joining the holes [17]. Ron Evans invented another related developable
form called Plexagons [6]. Paul Bourke has recently constructed computer generated D-forms and plexagons
[5, 6].

In this paper, we present a method that allows the user to approximate developable surfaces with valence-
3 planar meshes. One important usage of our method is to design a large variety of D-forms [22].

3 Methodology

The fundamental idea behind our computational method is to slice a planar mesh with planes. Our method
is inspired by traditional sculpture techniques. It is based on a planar truncation operation which simply
slices a vertex or an edge by intersecting the mesh with a planar surface. This operation always guarantees
planarity and is conceptually similar to “”truncation” or “beveling” operations in shape modeling. However,
the classical truncation or beveling operations do not guarantee that the resulting faces will be planar [3].

Our planar truncation operation can work as either vertex, edge, or face truncation. The only difference
between these three cases is in how we define the slicing planes. The slicing planes are given by two
parameters; a normal vectorn that is perpendicular to the plane and a pointp that is on the plane. For
this paper, edge truncation is the key operation. The default parameters for edge truncation guarantee to



provide smoothness with successive iterations. In other words, when planar truncation is applied to an edge
consecutively, it can smooth the edge by creating a nice curved developable surface. With default parameters
smoothing can result in a quadric profile like Chaitkin’s algorithm. For detailed discussion of Chaitkin’s
algorithm see [3].

Figure 3 shows smoothing of an edge by consecutive application of planar truncation. As can be seen in
this figure, with each application of the cut operation, the resulting surface approaches a developable surface.
Moreover, the application of a planar truncation operation creates valence-3 vertices as seen in the figure. If
we apply the edge-cut operation to four edges of a cube consecutively, we can eventually create a D-form
which is similar to the D-form that is created from to ellipsoid as shown in Figure 4.

Figure 3: If we apply cut operations to 4 edges of a cube, the shape eventually approaches to a D-form.

Figure 4: Using the procedure in Figure 3, we can create a D-form that resembles one of the most well-
known D-forms. Note that if we unfold this structure, the resulting two pieces will not exactly be ellipsoids.

Note that since slicing is done with an intersection operation, one planar truncation operation can remove
more than one vertex or one edge. In other words, our planar truncation operation slices all the edges
intersected by the given slicing plane and gets rid of the portion of the mesh which remains in the positive
side of the slicing plane. Therefore, the method works best for converting convex shapes to D-forms. To
avoid cutting the whole mesh globally, we also provide a “local planar truncation” operation that traverses
all the edges of the mesh starting from the marked element, until the slicing plane was hit. Using local planar
truncation it is possible to remove only a part of the shape without touching the rest.

It is also possible to apply the cut operation to multiple vertices, edges or faces. We compute one slicing
plane for each selected entity and then apply the cut operation. All slicing planes are computed before any
cut operation is performed, since a selected entity could potentially be modified by a cut operation.



4 Implementation and Results

We have implemented our planar truncation operation in a topological mesh modeling software, TopMod
[1, 2]. We provide three different tools –Cut by Edge, Cut by Vertex, andCut by Face. Users can adjust the
default parameters of the slicing planes.

Figures 1 and 8 show D-forms sculpted out of a dodecahedron by using our planar truncation operation.
The designed D-forms are later unfolded by using Pepakura [21]. A screen-shot of the Pepakura user inter-
face is shown in Figure 5. The unfolded pieces can be cut either using a pair of scissors or a laser cutter.
Once the pieces are cut, they are glued together to create the final D-form sculpture.

Figure 5: Unfolding a D-form in Pepakura. This D-form is obtained from an octahedron. We first truncate
vertices to obtain a truncated octahedron. Then, we creat the D-form with successive edge truncations. Note
theY shape of unfolded pieces.

The three piece case in Figure 8 is particularly interesting since the long piece touches itself. This
suggests that it may be possible to construct a D-form using only one piece, although we have not been able
to find one. The D-form in Figure 5 is also interesting in the sense that both unfolded pieces have aY shape.
The Figure 6 shows some other unusual D-forms that consist of more than two pieces. The planar truncation
operation can also be used to create interesting patterns that can be built as freeform glass structures as shown
in Figure 7.

5 Conclusions and Future Work

In this paper, we have presented a computational method for modeling D-forms as conical meshes. Our
method provides an alternative to physical D-form construction. Our computer generated D-forms can be



Figure 6: Some unusual D-forms that consist of more than two pieces.

Figure 7: The planar truncation operation can also be used to create interesting patterns that can be built
as freeform glass structures

unfolded using commercially available software and cut using a laser cutter. Physical D-forms can be ob-
tained by putting the unfolded metal or paper pieces together. Using this method it is possible to create
complicated D-forms that cannot be constructed without a computer. One of the major advantages of our
D-forms is that they are created as conical meshes and can therefore be constructed at larger scales even from
thick and planar materials like glass or sheet metal.

Currently our method works only for convex shapes. We are look at ways of generalizing our method to
non-convex shapes and shapes with saddle points.
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