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Abstract

This paper examines a range of geometric concepts of importance to the further understanding of two- and three-
dimensional design. A brief explanation is given of symmetry in patterns and tilings, and attention is focused on a
particular set of polyhedra, known as the Platonic solids. The difficulties encountered in attempting to apply two-
dimensional repeating designs to regular polyhedra, avoiding gap and overlap and ensuring precise registration, are
recognized. The results of ongoing research at the University of Leeds are presented. The symmetry characteristics
of importance to the process are identified, and the patterning of each of the five solids is explained and illustrated.
Avenues for further research are suggested.

Introduction

It is well established that regularly repeating patterns (or tilings) exhibit symmetry characteristics. That is,
certain geometric actions, known as symmetries, of which there are four (translation, reflection, glide-
reflection and rotation), combine to produce seventeen possibilities across the plane. In the context of this
paper, patterns are best considered as those repeating designs that comprise a motif (or motifs), which
repeats at regular intervals across the plane. An individual repeating unit may comprise both motif and
background. A tiling is best considered as a restrictive category of patterns that covers (or tessellates) the
plane without gap or overlap. Both categories of repeating designs conform largely to the same symmetry
rules and structural geometry. A polyhedron has been defined as “…a finite, connected set of plane
polygons, such that every side of each polygon belongs also to just one other polygon, with the provision
that the polygons surrounding each vertex form a circuit”[1]. The regular polyhedra also exhibit
symmetry characteristics. The polygons that join to form polyhedra are called faces. These faces meet at
edges, and the edges meet at vertices. There are five regular convex polyhedra (known as “Platonic
solids”), each comprised of combinations of one specific type of regular polygon. Within each Platonic
solid the faces are thus identical in size and shape, and the same number of faces meets at each vertex.
The five Platonic solids are as follows: the tetrahedron (four faces), the octahedron (eight faces), the cube
or hexahedron (six faces), the dodecahedron (twelve faces) and the icosahedron (twenty faces). The
patterning (or tiling) of regular solids in ways that ensure precise registration and the absence of gaps or
overlaps is neither a trivial nor a straightforward matter. When regular repeating patterns, which perform
to satisfaction on the Euclidean plane, are folded several times, into different planes, their component
parts will not readily correspond. Only certain pattern types, with particular symmetry characteristics, are
suited to the precise patterning of each Platonic solid. This paper identifies a systematic means by which
appropriate pattern types can be identified. An understanding of the symmetry characteristics of patterns
and polyhedra can help provide a means by which the latter can be covered by the former in a systematic
and complete way, avoiding gaps or overlaps and ensuring precise registration.



Symmetry in Patterns and Polyhedra

As noted in the Introduction, it is well recognized that regularly repeating patterns (or tilings) exhibit
symmetry characteristics, involving certain geometric actions, which combine to produce seventeen
possibilities across the plane. Translation moves a figure over a given distance and direction whilst
maintaining the same orientation. A translated figure (motif or tile) may undergo repetition horizontally,
vertically or diagonally. Reflection produces a mirror image across a reflection axis. Glide-reflection
combines reflection and translation across a glide-reflection axis. Rotation in all-over patterns or tilings
may be two-fold (180 degrees), three-fold (120 degrees), four-fold (90 degrees) or six-fold (120 degrees).
Proof of the existence of only seventeen all-over pattern classes is provided by Weyl [2], Coxeter [3] and
Martin [4].

A further geometrical element of importance to pattern structure is the underlying framework or
lattice. Each lattice (of which there are five distinct types) is comprised of unit cells of identical size
shape and content. Each cell contains the essential repeating unit or element of the pattern or tiling, as
well as the symmetry instructions for the pattern’s construction. When translated in two independent non-
parallel directions, the full pattern or tiling is produced.

Designs possessing the same symmetry combinations are said to belong to the same symmetry class,
and may be classified accordingly. The seventeen all-over pattern combinations, of the four symmetry
operations, have been illustrated on numerous occasions elsewhere. Associated with each class is a
notation comprised of up to four symbols, indicating the constituent symmetry operations of each class.
Further accounts of the classification and construction of regularly repeating patterns and tilings are been
given by Woods [5], Schattschneider [6], Stevens [7], Washburn and Crowe [8] and Hann and Thomson
[9].

A polyhedron consists of polygonal faces, with these faces meeting at edges, and edges joining at
vertices. Composed of faces identical in size and shape, equally surrounded vertices and equal solid
angles, the regular convex solids, known as the Platonic solids, are highly symmetrical polyhedra. The
symmetry characteristics of reflection and rotation that govern the properties of regularly repeating
patterns and tilings, are also of importance to three-dimensional solids. This study aims to consider the
links between these symmetry properties in two- and three-dimensions and to investigate how these
characteristics govern the application of repeating patterns to the Platonic solids. Further accounts of the
properties of polyhedra are given by Coxeter [3], Critchlow [10], Pearce [11], Cundy and Rollett [12],
Holden [13] and Cromwell [14].

Patterning the Platonic Solids

In regularly repeating plane patterns each unit cell is surrounded by identical cells of exactly the same
size, shape and content. The purpose of this investigation is to find which of the seventeen pattern classes
can regularly repeat around the Platonic solids, applying only the restriction that the unit cell must repeat
across each face in exactly the same way that it does in the plane pattern. In order to assess the geometric
characteristics of importance in the regular repetition of pattern around the Platonic solids, the initial
investigation has focused on the application of areas of the unit cell (capable of building-up the repeating
pattern) to act as a tile when applied to the faces of the polyhedra. This placed emphasis on the pattern’s
underlying lattice structure and the symmetry operations contained within it.

The first step involved matching the polyhedral faces to a suitable lattice type. Considering the
polygons that comprise the faces of the Platonic solids, the equilateral triangle, square and pentagon were
seen to be of greatest significance. All of the seventeen all-over pattern classes may be constructed from



either a square or hexagonal lattice and some may be constructed on both lattice types [15]. Suitable
patterns applicable to the tetrahedron, octahedron and icosahedron, whose faces are equilateral triangles,
must therefore be constructed on grids of equilateral triangles. This indicates that patterns created on a
hexagonal lattice, where the unit cell comprises two equilateral triangles, are considered appropriate
candidates to tile these three solids. The cube is the only Platonic solid that is composed of square faces.
All pattern classes constructed on square grids are therefore considered suitable to repeat around the
surface of the cube. Patterning the dodecahedron, composed of regular pentagonal faces, requires a
different approach. The regular pentagon, with five-fold rotational symmetry, cannot tile the plane
without gap or overlap. There are however various equilateral pentagons that can tessellate the plane.
Probably the best known is the Cairo tessellation, formed by convex equilateral pentagons (equal-length
sides, but different associated angles). Using knowledge of the Cairo tessellation, the method used by
Schattschneider and Walker [16] presents one solution to this problem, but this is an area requiring
substantial further investigation.

Initial constructions have utilized the whole square unit cell to tile the cube and half the hexagonal
unit cell to tile the tetrahedron, octahedron and icosahedron. An example of a p6 design used to tile the
icosahedron is shown in Figure 1, where the area used to tile each face is equal to half the area of the unit
cell. Figure 2 illustrates the same p6 pattern used to tile the tetrahedron. Further developments have
involved extracting smaller areas of the unit cell for use as tiles. The area constitutes either a square or
equilateral triangle and must be capable of creating the full repeating pattern when symmetries are
applied. The smaller the area of the pattern used to tile the polyhedron, the larger the scale of the pattern
on the solid. Figure 3 illustrates pattern class p6 tiling the octahedron. The area used to cover each face of
the solid is equal to one-sixth of the area of the unit cell.

Figure 1  Design for the icosahedron regularly tiled with pattern class p6.
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Figure 2  Design for the tetrahedron regularly tiled with pattern class p6.

Figure 3  Design for the octahedron regularly tiled with pattern class p6.
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Results

The interim results of the investigation into the tiling of the Platonic solids are summarized in Table 1.
All-over pattern classes are identified along with their constituent lattice structures and the area of unit
cell applied to each face. The symmetry characteristics of these regularly patterned solids are described
further below, considering the symmetry characteristics of each polyhedron and the changes that occur
when regularly tiled.

Table 1  Summary of the symmetry characteristics exhibited by the regularly tiled tetrahedron,
octahedron, icosahedron and cube

Platonic solid

P
attern

class

L
attice

structure

A
rea of unit

cell on face

V
ertices

equivalent

R
otation

present on
vertices

R
otation

present on
edges

R
otation

present on
faces

R
eflection

present on
edges

R
eflection

present on
faces

p2 hexagonal 1/2  2-

c2mm hexagonal 1/2  2-  

p6 hexagonal 1/2  3- 2- 3-
Tetrahedron

p6mm hexagonal 1/2  3- 2- 3-  

p3 hexagonal 1/2  2- 3-

p31m hexagonal 1/2  2- 3- 

p3m1 hexagonal 1/2  2- 3-

p3m1 hexagonal 1/6
a) 2-
b) 2-
c) 2-



p6 hexagonal 1/2  4- 2- 3-

p6 hexagonal 1/6
a) 4-
b) 2- 2-

p6mm hexagonal 1/2  4- 2- 3-  

Octahedron

p6mm hexagonal 1/6
a) 4-
b) 2-

2-  

p6 hexagonal 1/2  5- 2- 3-
Icosahedron

p6mm hexagonal 1/2  5- 2- 3-  

p4 square 1  3- 2- 4-

p4mm square 1  3- 2- 4-  Cube

p4gm square 1  3- 2- 4-

It is possible to tile the tetrahedron with certain patterns possessing two-fold and six-fold rotational
symmetry. An area equivalent to half the unit cell forms the repeating tile in each case. Tetrahedra tiled
with patterns possessing six-fold rotation maintain the original rotational properties of the solid. Centers
of six-fold rotation, characteristic of the two-dimensional plane pattern, become axes of three-fold
rotation at each vertex on the regularly patterned solid. Centers of two-fold and three-fold rotation in the
pattern remain unchanged when applied to the tetrahedron; they locate at the midpoint of each edge and
the center of each face respectively. A tetrahedron tiled with class p6mm also presents the six reflection
planes of the tetrahedron. Figure 4a shows an illustration of pattern class p6 tiling the tetrahedron in
which an area equal to half the unit cell tiles each face. When a p2 or c2mm pattern is applied to the
tetrahedron, the pattern exhibits no rotation at the vertices but tetrahedral axes of two-fold rotation are
maintained through the mid-point of opposite edges. The edges of the solid tiled with c2mm, however, are



not equivalent as two edges exhibit a plane of reflection, which slices through the relevant edge and
divides the solid into two equal parts. A reflection plane therefore runs through the center of each face. In
the case of the tetrahedron, it seems that a pattern must possess reflection and rotational properties equal
to or higher than those of the tetrahedron, in order to maintain the rotational symmetries of the solid.
Pattern classes p3, p3m1 and p31m are not applicable to the tetrahedron due to the two types of tile
created from the equilateral triangular halves of the unit cells and the reflection axes created in class
p31m. For these patterns to repeat around the surface of a polyhedron there must be an even number of
faces meeting at each vertex.

Pattern classes p3, p3m1, p31m, p6 and p6mm are each suited to patterning the octahedron. These
possibilities incorporate repeating tiles of areas equivalent to half and one-sixth that of the unit cell.
Considering the tiles which comprise half the area of the unit cell, it appears that patterns with three-fold
rotation must consist of two independent halves of the unit cell or possess reflection planes which
correspond with the edges of the solid, in order to permit for the four octahedral faces meeting at each
vertex. The two tiles created by each half of class p3 and p3m1 unit cells result in two-fold rotation at
each vertex but no rotation at the edges. Pattern class p31m also presents axes of two-fold rotation at the
vertices as a result of the reflection planes present at each edge. Axes of three-fold rotation, preserving the
symmetries of the solid, are also evident at the center of each face. Pattern class p6 and p6mm maintain
the rotational symmetries of the octahedron with four-fold rotation present at each vertex; two-fold
rotation is present at the mid-point of each edge and three-fold rotation at the center of each face. Class
p6mm also retains the reflection planes of the octahedron. Comparable with the tetrahedron, it seems that
a pattern must possess symmetry characteristics equal to or higher than those of the solid in order to
preserve the underlying symmetries of the octahedron.

As stated previously, it is also possible to tile the octahedron with an area equal to one-sixth of the
unit cells of pattern classes p3m1, p6 and p6mm. The use of a small component of the unit cell imparts
different characteristics to the octahedron than previously seen. When p3m1 is applied to the octahedron
three different vertex types are evident, with identical types found in opposite pairs each exhibiting two-
fold rotation. Pattern class p3m1 requires an even number of faces to meet at each vertex in order for
reflection at each edge to form the whole unit cell. This unit is then repeated through rotation or
successive reflection to tile the octahedron. The application of classes p6 and p6mm results in the
presence of two different types of vertices, in each case producing one axis of two-fold rotation and two
axes of four-fold rotation. Axes of two-fold rotation are also found at the mid-point of the four edges that
connect the vertices exhibiting two-fold rotation. The reflection present in pattern class p6mm also
imparts reflection planes that slice through the center of each face and through each edge. An octahedron
tiled with classes p6 and p6mm resembles two identically patterned pyramids placed base to base. Figure
4b illustrates pattern class p6 tiling the octahedron, where an area equal to one-sixth of the unit cell tiles
each face. When a component equal to one-sixth of the unit cell is applied to the octahedron the pattern
must be capable of repetition through rotation or reflection around an even number of faces. A pattern
possessing higher rotational properties than the octahedron will rotate around vertices. Patterns possessing
lower rotational characteristics must contain reflection axes that correspond with the edges of the
octahedron to allow repetition around the four faces meeting at each vertex.

Only pattern classes containing six-fold rotation are applicable to regularly tiling the icosahedron. As
the icosahedron possesses the same rotational properties found in pattern class p6, the icosahedral
rotational symmetries are preserved in the tiled solid. In addition, the application of pattern class p6mm
also maintains icosahedral reflection properties. Figure 4c illustrates pattern class p6 tiling the
icosahedron, where an area equal to half the unit cell tiles each face.

Connecting points of four-fold rotation in pattern classes p4, p4gm and p4mm will produce a square
grid, which will lend itself readily to the tiling of the cube. Application of these pattern classes maintains



cubic rotational symmetry. Three-fold rotation is preserved at the vertices, two-fold rotation at the mid-
point of each edge and four-fold rotation at the center of each face. A cube tiled with class p4mm also
retains the reflection symmetry of the cube with four reflection planes slicing through each face and each
of the twelve edges.

Figure 4  a) the tetrahedron, b) the octahedron and c) the icosahedron, tiled with pattern class p6.

Discussion and Avenues of Further Research

The first stages of this investigation into the regular tiling of the Platonic solids have identified several
areas for further exploration. The importance of the symmetry properties of the polyhedra, particularly the
order of rotation axes present at the vertices, has become readily apparent. The reflection symmetry of the
solid is often disguised by the application of pattern, but rotation axes operational at each vertex remain
evident, except when a tile is composed of an area smaller than half that of the unit cell. The evidence of
rotation axes on the faces and edges of the solid depends entirely on the symmetry characteristics of the
two-dimensional pattern. A regularly tiled polyhedron, therefore, can exhibit different symmetry
characteristics to the underlying polyhedral structure.

Where solids are tiled with pattern components equal to half or the whole unit cell, vertices are found
to be equivalent in terms of their symmetries. Where a smaller component of the unit cell has been
manipulated on the surface of a polyhedron, several types of vertex are evident. For example, multiple
vertex types are seen when areas equal to one-sixth of the unit cells of pattern classes p3m1, p6 and
p6mm are used to tile the octahedron. It should also be noted that the octahedron is the only Platonic solid
capable of being regularly tiled with areas of a repeating pattern smaller than half the unit cell. When
there is no rotation or reflection present at the edges of a regularly tiled solid, two types of face are
evident. On a hexagonal lattice, this is equivalent to no reflection or rotation present at the center of the
unit cell, as illustrated by the tiling of the octahedron with p3 and p3m1 (half unit cell).

It is apparent from the results in Table 1 that for a plane pattern to tile the regular solids it must
possess rotational symmetry axes of two or higher. This contradicts an earlier study by Pawley [17],
which states that plane patterns must have a symmetry axis higher than the second order to fit onto
polyhedra, as both classes p2 and c2mm are suited to tiling the tetrahedron. These are the only two pattern
types (discovered to date) that exhibit the highest rotational symmetry of order two and are capable of
tiling a Platonic solid. When applied to the tetrahedron these patterns are the only types that do not exhibit
rotation at vertices.

It should be stressed that this paper reports on the outcome of research completed to date, and that it
is recognized by the authors that the results presented are not all encompassing. For example, further

a) b) c)



analysis of the lattice structures underlying regularly repeating patterns and identification of potential
tiling areas within the unit cell need to be undertaken. Attention should be focused on irregular
pentagonal tessellations and other such tilings, particularly with respect to their suitability in tiling the
dodecahedron. From the results presented above, it is the intention to develop a system of classification
for regularly tiled Platonic solids, thus enabling the systematic application of pattern to regular polyhedra
following certain geometric rules. It is the intention to extend this enquiry to take account of the
Archimedean solids, as well as applying concepts such as scale symmetry and color symmetry to both
regular and semi-regular patterned polyhedra.

In Conclusion

It has been noted that the patterning of regular solids in ways that ensure regular repetition and precise
registration is not a straightforward matter. When regularly repeating patterns are folded into different
planes, their component parts may not readily correspond. As is the case in two-dimensions, the patterns
rely on the symmetries present to repeat by rotation (at edges and vertices) and/or through successive
reflection present at the edges of the solid. This paper presents and discusses a method by which
appropriate pattern types can be identified. An understanding of the symmetry characteristics of patterns
and polyhedra can help provide a means by which patterns may be applied to polyhedra in a systematic
and complete way, avoiding gaps or overlaps and ensuring precise registration. Preliminary results of the
enquiry are very encouraging and have given rise to the creation of a series of remarkable mathematical
solids. Several prototypes of these polyhedra are shown in Figure 4.
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