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Abstract 
 

My creative practice as a silversmith and sculptor has been inspired by diagrams drawn by a device recording the interaction of 
two pendulums, a Harmonograph. This led to an inquiry into mathematical methods that could be useful in visualizing the 
complex twisting surfaces suggested by these diagrams. The various mathematical approaches drawn upon are discussed in 
relation to the aims and an attempt is made of finding a common language. 
 
 

Inspiration 
 
My search for form was triggered by a series of diagrams that are based on the principles embodied by a 
system of coupled pendulums, in a device called a ‘Harmonograph’ (see Cundy & Rollet [1]). The 
diagrams traced out by this device (called ‘harmonograms’) give the illusion of ribbon-like surfaces 
following a relatively unconstrained three-dimensional course, yet in relation to a sense of symmetry and 
spatial alignment (Fig.1). These loops seemed to express some fundamental principles of dynamic forms, 
like standing wave forms, or rhythmical orbits arising from the interplay of simple forces of attraction. 
Despite the evasive, pre- or para-material nature of these principles, my background as a silversmith led to 
the attempt of realising the ‘forms’ as a sheet metal surface.  
 

Anticlastic forming 
 
‘Anticlastic forming’ is a technique capable of creating surfaces of negative Gaussian curvature, by 
stretching the peripheral areas and compressing the central area of a sheet metal template. This is carried 
out with a variety of hammers and saddle-shaped ‘stakes’. Fig. 2 shows stretching (green) and 
compression (orange) in the forming of a saddle shape, one that is similar to a hyperbolic paraboloid   
(Fig. 3). Anticlastic forming employs the opposite principle to the traditional techniques used for shaping 
a vessel or domical form, where synclastic curvature is achieved by compressing the peripheral areas and 
stretching the central area of the sheet metal template.  
 
 
 
 
 
 
 
 
 

Figure 1: Harmonogram               Figure 2:  Anticlastic raising            Figure 3: Hyperbolic paraboloid 



Anticlastic raising creates a simple saddle-shaped curvature locally, yet allows for the creation of a great 
variety of forms where the parameters of the process are varied over an elongated or more complex 
template. In terms of my own initial inspiration, the negative curvature enables the ‘fluid‘, helical twisting 
of a surface around its own axis as well as around an external center, thereby promising to allow the 
creation of the complex surfaces suggested by the ‘harmonograms‘.  
 
It was during the process of creating these desired forms that I encountered difficulties with visualising the 
surfaces in their three-dimensional complexity. Despite having worked out the three-dimensional 
continuity of the curves, the suggested curvature had to be fully understood locally, in terms of the 
different parameters of the anticlastic geometry. Another problem was posed by the design of the 
templates: could there be a means of better predicting the transformation of their two-dimensional shape 
into the three-dimensional form? It was at this point that I wondered how the application of mathematical 
methods could enhance my understanding of the qualities and manifestation of these forms. 
 
 

The Role of Mathematics 
 
The similarities to certain geometric and mathematical principles suggested that a study of these principles 
could be potentially beneficial, for several reasons: 
 

• It could aid in the conceptual understanding of the technical parameters, i.e. the parameters of the 
surface curvature of the tools and the desired outcomes. 

• It could improve methods of visualising the complex forms, both to be able to better resolve 
existing ideas as well as for future creative developments. 

• The mathematical principles promised to inform the philosophical enquiry into ‘generative form 
principles‘. 

 
In approaching related mathematical methods, it was found that they held some qualitative differences. 
Besides the fact that the mathematical definitions vary in their computational methods, they express 
different approaches to the generation of ‘form‘. Several questions posed themselves: which mathematical 
approach would best communicate the parameters of the forming process? Which mathematical approach 
was capable of expressing the dynamical principles initially sought for? And, being an idealist, the 
question was whether there was not an approach that could unify the different areas into one:  could the 
understanding of the local curvature parameters, of the global dynamic parameters, of the tactile, 
kinesthetic sense of form and the conceptual aims somehow find a common level of understanding? On 
the one hand this posed the danger of confusing or misinterpreting the principles, while it could on the 
other hand lead to new insights.  
 
It is here that the attempt of reading the principles as a ‘field of tension‘ enters. 
 
 

The Forming Process as a ‘Field of Tension‘ 
 
As mentioned above, the forming process exerts tensile and compressive stresses on a sheet metal 
template, given by the shape of the support and the placement of the hammer blows. While these stresses 
act locally, the entire workpiece generally extends beyond the central saddle region of the tool action. 
 
The outcome of the forming process depends on the following:                                                                   
 

• The orientation of the axes of symmetry of the template in relation to the principal curvatures of the 



           stake’s saddle influences the form fundamentally. The differences in orientation relate to the basic      
           complimentary nature of the catenoid an the helicoid (see Fig. 4, left and right, respectively). 

• The local Gaussian curvature of the surface, i.e., the product of the two principal curvatures. The 
greater the negative curvature, the more the metal needs to be stretched and compressed. 

• The difference between the two principal curvatures. Fig. 5 shows two ‘catenoidal channels’ of 
equal axial radius (Ra) and varying cross-sectional radii (Rc). 

• The focus of curvature expresses the location of the saddle point in relation to the midpoint of the 
template. This can be illustrated by analyzing the curvature of a given surface (Fig. 6). 

 

                      
Figures 4 and 5:  Parameters in anticlastic raising                                         Figure 6: Curvature analysis 
 
The interpretation of the forming process as a ‘field of tension‘ does involve a degree of abstraction, of 
withdrawing from the physical difficulties of controlling the technique. Yet on another level, this 
‘dynamic understanding‘ of the form principle at work can be found intuitively once the technique is 
mastered, and the strenuous control is not absorbing the attention any more. The forming process could 
then be understood as a field, which the sheet metal template is ‘fed‘ into. According to the above 
parameters, the template will slowly take form.  Another approach to understanding the parameters was to 
see the forms as being generated by the cross-section being ‘swept‘ along the axial curve of the form, yet 
this principle of axial curve and generator was limited to certain cases only.     
  
 

Surface Tension as a ‘Field of Tension‘ 
 
The similarity of the anticlastic surfaces to soap films and mathematically generated minimal surfaces 
suggested that an understanding of the latter could be very useful. This was suggested by several articles 
in the book The Visual Mind [2]. Fig. 7 shows a minimal surface spanning of a trefoil knot. Conceptually 
and physically, the minimal surface is defined by its boundary or boundaries and the principle of surface-
tension acting on the intermediary membrane. Here, the principle that generates the boundary(s) can be 
completely independent from the principle of surface-tension.  
 
To better understand the mathematical generation of minimal surfaces, algorithms were ‘borrowed’ from 
different sources and experimented with (for the main source, see Oprea [3]). Here it was found that most 
equations generated surface grids with u and v coordinates, which somewhat relates to the principle of 
building a surface from a series of generator curves along an axial curve. This is a very different approach 
to the one described above, where the form is dictated by its boundaries and the principle of surface 
tension. The two methods of understanding and employing the ‘generative principle‘ are not necessarily 
mutually exclusive. It is rather the case that thinking about the forms according to either principle will 
influence the conceivable outcomes. In my perception, the mathematical methods were trying to mimic 
the physical principle, but struggled to represent it. Yet these are limited observations: since carrying out 
my experiments I have been told that Ken Brakke’s Surface Evolver software [4] does permit a good 
control of the boundary curves. 



 
 
 
 
 
 
 
 

Figure 7:  Surface-spanning of a   Figures  8 and 9:   Minimal surfaces generated with   
                Trefoil knot                    Maple code written by John Oprea  
 

 
The Dynamical System as a ‘Field of Tension‘ 

 
The system of coupled pendulums represented by the Harmonograph and its ‘recordings‘ are fairly closely 
represented mathematically by Lissajous’ curves. The latter can also be generated in three dimensions and 
served as a source of inspiration (Fig. 10). Yet the principles can also be linked to other models of 
dynamical systems: the curve could then be interpreted as tracing out an orbit circling around the centers 
of gravity of the two pendulums. There are similarities to the computations of the three-body problem in 
astronomy, where the aim is to understand the interaction of three celestial bodies, generally where one 
moon orbits around two planets. Further similar principles were given by the strange or chaotic attractors 
that have been arising in the visual modeling of dynamical systems (Fig. 11, modeled with a program 
written by J. C. Sprott [5]). The literature states clearly that the path of the trajectory is not to be confused 
with any actual motion the system could be associated with, but this I did not accept so readily. While this 
approach was conceptually very closely related to my aims, the occurrence of anticlastic/minimal 
curvature in the suggested surfaces was much more arbitrary. 
 

 
Figure 10: 3D Lissajous plot            Figure 11:  Strange attractor  Figure 12: Lorenz attractor 
 
The principles rather expressed the overall dynamic continuity of the form, whereas the local anticlastic 
regions arise through offset iterations of the recurring ‘orbit’. Yet one source [6] revealed a surprising 
connection between the disparate approaches: illustrations were found where a transverse manifold arises 
from the Lorenz attractor, a ‘side-effect‘ that is rarely illustrated. A simplified band of this manifold is 
shown in Fig. 13, as illustrated by B. Krauskopf & H. M. Osinga [7]. While I was lacking an 
understanding of the generation of this manifold and its connection to the trajectory of the attractor itself, 
it illustrated how the attractor creates a field that generates ‘form’: the orbit spirals around two points in 
approximately two orthogonal planes. In my interpretation, these planes in turn can be seen as the cross 
sections of two intersecting tori (Fig. 14). The helicoidal manifold arises in-between these tori in a similar 
way to the helicoid being shaped in the anticlastic forming process. Here the saddle of the stake can be 



seen as presenting the inner half of one of the tori, whereas the other torus has to be imagined to be arising 
from the action of the hammer blows (Fig. 15). The concept of form thus returns from the global dynamic 
principle to the local principle of the saddle surface, which in this case creates the separatrix between the 
two attractors. 

 

 
Figure 13: Lorenz manifold       Figure 14:  Lorenz attractor as 2 tori        Figure 15:  Helicoidal forming 
                   

Summary 
 
The questions posed above, about the benefit of the mathematical approaches for my own practice, are 
difficult to answer. Each approach revealed different ways of understanding complex forms, and of 
defining complex forms. And the question was whether one naturally has to involve the other, whether the 
understanding depends on a definition. The understanding of the geometric parameters gained from the 
mathematical description of minimal surfaces was useful to better define the parameters experienced in 
the forming process. Initially it was thought that the engagement in the mathematical modeling of forms 
via the equations could be a way of arriving at new developments that could not have been visualised 
without this help. In retrospect, only very few forms were arrived at via mathematical modeling that were 
seen as successful models for my own practice. Yet most of the experimentation had been carried out 
independently, and it is certain that a collaboration with a mathematician could have been a lot more 
fruitful. The same held true for the exploration of three-dimensional Lissajous curves and strange 
attractors. Many of the resulting plots showed unsuitable transitions when interpreted as a surface. Others 
were more shallow in the third dimension than initially thought. Nevertheless, the computational 
visualisation did allow a much better three-dimensional perspective of the overall continuity as well as 
local transitions. Aspects of the plotted ‘forms’ could still serve as inspiration for the design process, 
without the expectation of being offered finished ‘designs’ by the mathematically generated models. 
  
The other question addressed the possibility of finding a language that is capable of communicating 
between the conceptual approaches and the practical, possibly haptic, non-verbal understanding of form 
and process. Several of the connections implied by the research of dynamical systems seemed to confirm 
that they ‘speak a language‘ one could readily empathise with. Although the dynamic principles described 
above are rather abstract, acting on an invisible level, I believe that their language of basic attractive and 
repulsive forces is accessible to our kinesthetic, bodily senses. A dancer would readily relate to these 
forces, though maybe he or she could not easily describe them in abstract terms. Likewise it might be 
difficult for a sculptor to verbally express the tension or the dynamics of a form, and any mathematical 
methods used to approach the principles might not do justice to the non-verbal understanding of form.  
 
Despite an uneasiness about the abstract language mathematics employs, I cannot help but think that on 
some hidden level ‘life’ does speak the mathematical language, and that our minds have an affinity to it, 
without the very strenuous, intellectual effort of abstraction. Maybe the plea for a more ‘embracing‘ 
language is impossible to answer, as the principles are inherently complex and not readily simplified to 



serve everybody. Nevertheless, I believe that there is hope, and the trend towards improved methods of 
visualisation via the computer is positive. Yet here it is also easy to overlook the complexity of the 
specialised programming language, based on mathematics in itself. I cannot say much about the trend 
towards virtual reality, but intuitively I would much rather suggest that we remain rooted in the real. The 
search for forms discussed here expresses an attempt to defy gravity, but in no way is this experienced as a 
desire to leave the physical behind. If anything, the forms are trying to relate to something deeply 
physical, possibly so deep that it is invisible. 
 

The last three Figures show some of my recent work. Figure 16 is based on a space curve passing through 
a central circle, both acting as the two edge curves of the surface. Figure 17 is based on a minimal surface-
spanning of a trefoil knot. Figure 18 shows a vortex-like trajectory, based on illustrations of air currents. 
 

               
 
Figure 16:  Through the Centre       Figure 17:  Motion III 2006               Figure 18:  Flux             
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