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Abstract
The famed golden ratio appears in many different forms of art. Historically there have been people who believe that
the golden ratio can be used to create the most aesthetically pleasing figures. More recently, fractals have been used to
create beautifully intricate art. In this paper, we present an interesting connection between the golden ratio and fractal
trees. Four special self-contacting fractal trees that scale with the golden ratio possess remarkable symmetries and
provide new visual representations of well-known results involving the golden ratio. Golden variations of familiar
fractals including the Cantor set and the Koch curve appear as subsets of golden trees.

1 Introduction

Golden Ratio. The ‘golden ratio’φ is a remarkable number that arises in various areas of mathematics,
nature and art [7], [4], [13], [3], [5], [2]. The most basic geometric description of the golden ratio involves a
line segment. Without loss of generality, assume the line segment is[0,1]. There existsa∈ (0,1) such that
the ratio of the length of[0,1] to the length of[0,a] is equal to the ratio of[0,a] to [a,1] (see Figure 1). By
design,a = 1/φ . Thus1/φ is the unique positive solution the the quadratic equation1−x−x2 = 0, andφ is
the unique positive solution to the quadratic equationx2−x−1 = 0. Hence
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Figure 1: Dividing the unit interval according to the golden ratio

There are many interesting and useful equations that can be derived. Becauseφ +1 = φ2, any positive
power ofφ can be expressed in terms of a linear expression withφ . For example:

φ3 = φφ2 = φ(1+φ) = φ +φ2 = φ +φ +1 = 2φ +1

Similarly, φ4 = 3φ +2. For reciprocal powers ofφ , we can also find linear equations by using1/φ = φ −1.
In general, the integer powers ofφ can be related to the Fibonacci sequence{Fn} (F0 = 1, F1 = 1, F2 = 2,
Fn = Fn−1 +Fn−2 andFn is called thenth Fibonacci number).

φn = Fn−1φ +Fn−2, (n≥ 2), and
1

φn = (−1)n(Fn−Fn−1φ), (n≥ 1) (2)
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Figure 2: (a) Equilateral triangle, (b) Pentagon and Pentagram, (c) Golden Triangles (4ABC and4BCD)
and Golden Gnomon (4ABD), (d) Decagon

The Fibonacci numbersFn are connected toφ in yet another way:

φ = lim
n→∞

Fn

Fn−1
.

The golden ratio can be found in many classical geometrical figures. We briefly mention figures that
are relevant for this paper. Consider an equilateral triangle and the circle that circumscribes it, as in Figure
2a. The line segmentAB joining midpoints of two sides can be extended to the circle atC, and the ratio
of AC to AB is φ . Now consider a pentagon and a pentagram with the same vertices as in Figure 2b. The
interior angles at each vertex of a pentagon are108◦. Again one can show that the ratio ofAC to AB is φ .
A triangle with the angles72◦,72◦,36◦ is commonly called agolden triangle(4ABC in Figure 2c). Such
a triangle can be divided into a smaller golden triangle (4BCD) and agolden gnomon(a triangle with the
angles36◦,36◦,108◦, given by4ABD). Any triangle in Figure 2b is either a golden triangle or a golden
gnomon. Golden triangles also appear in the decagon (Figure 2d).
There are many other interesting aspects of the golden ratioφ . The golden ratioφ can be considered to be
the most ‘irrational’ number because it has a continued fraction representation

φ = [1,1,1, · · · ] = 1+
1

1+ 1
1+ 1

1+···

. (3)

This representation is straightforward to derive by using the equationφ = 1+ 1/φ . There is also a nested
radical expression for the golden ratio which can be derived from the equationφ2 = φ +1:
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√
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√
1+ · · ·. (4)

Fractals and The Golden Ratio.The golden ratio appears in fractal geometry as well as classical geometry,
perhaps due to its own self-similar nature. Self-similarity is apparent in a pentagon and pentagram with the
same vertices (as in Figure 2b). There is a smaller pentagon inside, and one can then construct the smaller
pentagram with the same vertices as this smaller pentagon. This process can be repeatedad infinitum. The
same idea applies to a golden triangle and dividing it into a smaller golden triangle and golden gnomon. Be-
sides geometric representations of self-similarity, the self-similar nature of the golden ratio is also displayed
in the continued fraction representation (Equation 3) and the nested radical (Equation 4).

There is no strict mathematical definition of “fractal”, but when we refer to a setF as being fractal, we
generally have the following in mind:

• F has fine structure (detail at arbitrary levels)



• F is too irregular to be described in traditional geometrical language (locally and globally)

• Often there is some form of self-similarity (the whole is made up of smaller parts that are similar to the
whole)

• Usually the ‘fractal dimension’ ofF is greater than its topological dimension

• Typically F can be defined in a very simple way, possibly recursively

Figure 3: Middle Thirds Cantor Set

One well-known fractal is the middle thirds Cantor set, where one starts with an interval of unit length,
removes the middle third, and continues the processad infinitum(Figure 3). This set is self-similar, and one
can find the corresponding similarity dimensionD as follows. The original line segment is scaled down by a
factor of 3 to obtain 2 similar line segments, soD is given by3D = 2, or D = log2/ log3≈ 0.6309. We shall
see that a ‘golden’ Cantor set [6] appears in several of our golden trees. The general family of middle Cantor
sets{Cα}α∈(0,1) includes the classic middle thirds Cantor set. Givenα ∈ (0,1), the middle-α Cantor setCα
is obtained from removing the middle open set of lengthα from the unit interval, then continuing to remove
middlesad infinitum. It is straightforward to show that the similarity dimension of a middle-α Cantor set
is log2/ log(1/β ), whereβ = (1−α)/2. There are many other instances of the golden ratio and fractals
appearing together in literature, and thus it is not possible to provide a complete survey here. There is an
interesting relationship between the golden ratio and variations on another well-known fractal, the Sierpiński
gasket [1]. Our current paper deals with the golden ratio and a specific class of fractals, the self-contacting
symmetric binary fractal trees.
Fractal Trees. Fractal trees were first introduced by Mandelbrot [8]. The class of symmetric binary fractal
trees were more recently studied by Mandelbrot and Frame [9]. A symmetric binary fractal treeT(r,θ) is
defined by two parameters, the scaling ratior (a real number between 0 and 1) and the branching angleθ (an
angle between0◦ and180◦). The trunk splits into two branches, one on the left and one on the right. Both
branches have length equal tor times the length of the trunk and form an angle ofθ with the affine hull of
the trunk. Each of these branches splits into two more branches following the same rule, and the branching
is continuedad infinitumto obtain the fractal tree. Each tree has left-right symmetry.

(a) T(rsc,40◦) (b) T(rsc,112.5◦) (c) T(rsc,150◦)

Figure 4: Self-contacting Symmetric Binary Fractal Trees

A self-contacting symmetric binary fractal tree has self-intersection but no actual branch crossings. For a
given branching angleθ , there is a unique scaling ratiorsc(θ) (or justrsc) such that the corresponding tree is



self-contacting [9]. The values ofrsc as a function ofθ have been completely determined [9]. To determine
the value ofrsc, find the smallest scaling ratio such that there is part of the tree besides the trunk that is on the
affine hull of the trunk [9], [12]. Figure 4 displays three different self-contacting symmetric binary fractal
trees. Further details about the general class of self-contacting trees are available [9], [11], [12].

To describe the fractal trees and their scaling properties more precisely, we use an address system. For
anyr ∈ (0,1) and anyθ ∈ (0◦,180◦), thegenerator mapsmR(r,θ) (or justmR) andmL(r,θ) (or justmL) are:

mR

([
x
y

])
= r

[
cosθ sinθ
−sinθ cosθ

][
x
y

]
+

[
0
1

]
, mL

([
x
y

])
= r

[
cosθ −sinθ
sinθ cosθ

][
x
y

]
+

[
0
1

]

(5)
An addressA = A1A2 · · · is a string (finite or infinite) of elements, with each element eitherR (for ‘right’)
or L (for ‘left’). The levelof the address is equal to the number of elements in the string. The only level 0
address is the empty addressA0. An address mapmA is a composition (finite or infinite) of generator maps.
An infinite address map is the limit of finite address maps, and is well defined becauser ∈ (0,1). If C is any
compact subset ofR2 and if mA is a levelk address map, then the setmA(C) is a compact subset ofR2 that
is similar toC with contraction factorrk.

The trunk T0 of any tree is the closed vertical line segment between the points(0,0) and (0,1). The
imagemR(T0) is the first branch to the right of the trunk and the imagemL(T0) is the first branch on the left
side. Given an addressA, mA(T0) is a branch. Thepoint with addressA, PA is mA((0,1)). If A is finite the
point is avertex, if it is infinite, the point is atip point. Thesymmetric binary fractal treeT(r,θ) is defined to
be the limit as the number of levels of branching goes to infinity. Thetop pointsof a tree are all points of the
tree that have maximaly-value. For an addressA = A1A2 · · · , there exists a natural path on the tree that starts
with the trunk and goes toPA , consisting of the trunk along with all branchesb(A i), whereA i = A1 · · ·Ai .
We denote this pathp(A). A levelk subtreeof a treeT(r,θ) is mA(T) for some levelk addressA, denoted
by SA(r,θ) or SA .

2 Golden Trees

(a)T(1/φ ,60◦) (b)T(1/φ ,108◦) (c)T(1/φ ,120◦) (d)T(1/φ ,144◦)

Figure 5: Golden Trees

We now discuss the relationship between the golden ratio and self-contacting symmetric binary fractal
trees. There are exactly four self-contacting symmetric binary fractal trees for whichrsc = 1/φ (see Figure
5), corresponding to60◦, 108◦, 120◦ and144◦ [11]. The golden treeT(rsc,60◦) has been discussed in other
literature [13], [10]. Each tree possesses remarkable symmetries in addition to the usual left-right symmetry
of symmetric binary trees. The trees all seem to ‘line up’. Most of the observations and figures are given
without proof, and generally the proofs are wonderful exercises involving trigonometry, geometric series, the
scaling nature of the fractal trees, and the many special equations involving the golden ratio (so very good
for students!).



To determinersc for any angle, we find a path which leads to a point on the subtreeSR that has min-
imal distance to they-axis (other than the point that is the top of the trunk). ForT(rsc,60◦), the path
is p(RL3(RL)∞), for both T(rsc,108◦) andT(rsc,120◦), the path isp(RR(RL)∞), and finally, the path for
T(rsc,144◦) is p(RR). For any self-contacting tree, aself-contact pointrefers to a point on the tree that is
on thex-axis that corresponds to more than one address. For the treeT(1/φ ,60◦), a self-contact point is
PRL3(RL)∞ , because this point is the same asPLR3(LR)∞ . The reader can verify thatrsc = 1/φ for each angle.

The top points of the golden treeT(1/φ ,60◦) form a golden middle Cantor set. Letl be the length of the
top of the tree,i.e., the length between the leftmost top pointP(LR)∞ and the rightmost top pointP(RL)∞ . The
top points are geometrically similar (with a factor of

√
3) to the middle Cantor set withα = 1/φ3. The first

two iterations of removing open middles are shown in Figure 6. At the first iteration, the two remaining line
segments each have lengthl/φ2, because they are on the tops of level 2 subtreesSRL andSLR. The length
of the gap at the first iteration must be equal tol/φ3. Thus l

φ2 + l
φ3 + l

φ2 = l . Simplifying this expression

gives2φ +1 = φ3, as established in Equations 1. Thus we have a visual representation of one of the many
equations involvingφ . The scaling dimension of this golden Cantor set islog2/(2logφ). The top of the tree
T(1/φ ,60◦) yields a ‘golden’ Koch curve (see Figure 7).

Figure 6: Golden Cantor Set onT(1/φ ,60◦)

Figure 7: Golden Koch Curve onT(1/φ ,60◦)

Another well-known equation involvingφ can be visualized onT(1/φ ,60◦). Becauseθ = 60◦, the tops
of the subtreesSLRR andSRLLL are collinear. Consider the triangle consisting of the top of the subtreeSLR as
one side, the tops ofSLRR andSRLLL as another side, and the line segment joining them as in Figure 8a. This
triangle is an isosceles triangle because the angles are120◦,30◦,30◦. Setting the sides equal and using the
scaling nature of the tree giveslφ2 = l

φ3 + l
φ4 . This equation simplifies to the familiar equationφ2 = φ +1.

Equilateral triangles and hexagons can also be associated withT(1/φ ,60◦), as in Figures 8b and c. The
boundary of the center region in Figure 8c is a golden Koch snowflake .

As with T(1/φ ,60◦), the top points ofT(1/φ ,108◦) form a golden Cantor set. Letl be the length of the
top of the tree,i.e., the distance betweenP(LR)∞ andP(RL)∞ , then the gap betweenPLR(RL)∞ andPRL(LR)∞ has
lengthl/φ3. One can form a pentagon from the tops of the level 3 subtreesSLRR, SLLL, SRRRandSRLL along
with the line segment in the gap (as shown in Figure 9a). The interior angles at each vertex of a pentagon are



(a) (b) (c)

Figure 8: Triangles associated withT(1/φ ,60◦)

(a) (b) (c)

Figure 9: Pentagons associated withT(1/φ ,108◦)

108◦, thus it seems natural that pentagons, and in turn the golden ratio, are relevant for this tree. Figures 9b
and c show other related pentagons. Golden triangles, golden gnomons and pentagons can be seen in Figures
10a,b and c.

(a) (b) (c)

Figure 10: Golden triangles, golden gnomons and pentagon inT(1/φ ,108◦)

As with T(1/φ ,60◦) andT(1/φ ,108◦), the top tip points ofT(1/φ ,120◦) form a golden Cantor set.
With branching angle120◦, it is not surprising that there are equilateral triangles and hexagons associated
with the tree. One equilateral triangle is shown in Figure 11a. Another equilateral triangle is displayed in
Figure 11b. This triangle consists of the branchb(R) (segmentAB), the extension of the branchb(RR) to the
trunk (segmentBC), and the portion of the trunk that joins these two line segments (segmentCA). The length
of each side is1/φ , so the line segment that extends fromb(RR) divides the trunk according to the golden
ratio. This same figure also shows that the pointC divides the trunk according to the golden ratio (because



AC has the same length asAB).

(a) (b) (c) (d)

Figure 11: T(1/φ ,120◦): collinearity, equilateral triangles and hexagon

Figure 11c displays other equilateral triangles related to the triple tree.4ABI is equilateral, and each side
of the triangle isl (wherel denotes the length of the top of the tree). Likewise for4CDE and4HFG. 4BCJ
is equilateral, with sides of lengthl/φ . Thus the line segmentAD has lengthl + l/φ + l . One can show that
the ratio ofAD to ACis φ . Thus triangles4ACH,4BDF and4IEG are similar to4ADG with factor1/φ .
The iterated function system which consists of the three similarities that send the largest equilateral triangle
4ADG to three triangles scaled by1/φ , namely4ACH, 4BDF and4IEG, corresponds to a variation on
the usual Sierpiński gasket that is also self-similar [1].

Finally, the last tree we consider isT(1/φ ,144◦). This angle is supplementary to36◦, so it is natural
that golden triangles are found. In Figure 12a. The line segmentBD through the origin (atD) and the point
with addressR (atC) goes through all points of the formPR(LR)k for k≥ 0 andPR(LR)∞ . This line segmentBD
has length 1. The line segmentAB goes through the all points of the formP(RL)k for k≥ 0 andP(RL)∞ . The
triangle4ABD is a golden triangle. The line segmentAC that goes from the top of the trunk to the point
PR divides4ABD into a golden gnomon (4ACD) and a smaller golden triangle (4ABC). Figure 12b shows
branches of the formRk. They form a spiral of golden triangles.

(a) (b) (c) (d)

Figure 12: Golden figures onT(1/φ ,144◦)

The tip points ofT(1/φ ,144◦) form a golden Koch curve. The initial line segment is shown in Figure
12c, with the first iteration shown in Figure 12d. A line segment of lengthl is replaced with four line
segments each of lengthl/φ2. Figure 13a shows the tree along with four copies, rotated around the bottom
of the trunk with angles that are multiples of72◦. The tip points of the trees form a golden Koch snowflake.
Figure 13b shows a decagon associated with the tree and four copies. Finally, Figure 13 shows a pentagon
with each vertex acting as the bottom of a trunk of a tree and such that the five trees have the share the same
point as the top of the trunk.



(a) Golden Koch Snowflake (b) Decagon (c) Pentagon

Figure 13: More golden figures related toT(1/φ ,144◦)

3 Conclusions

This paper has presented four self-contacting symmetric binary fractal trees that scale with the golden ratio.
The four possible branching angles are60◦, 108◦, 120◦, and144◦. Various geometrical figures, other fractals,
and equations associated with the golden ratio can be associated with these special trees. The author hopes
that the readers have enjoyed new ways to see the symmetry and beauty of the golden ratio and fractals.
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