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Abstract 
 

Physical models are invaluable for conveying concepts in geometry. In this paper, I explain how to build stick 
models based on the Platonic polyhedra. Supplies for these models were thin bamboo shish kebab sticks from a 
grocery store, and vinyl tubing from a hardware store; both supplies are inexpensive and readily available. The 
tools used were a ruler for measuring the length of sticks, a clipper to cut the sticks, a scissor to cut the tubing, and 
a punch to make holes in the tubing. These tools are also reasonably inexpensive and readily available. Grade 
school, high school, undergraduate and graduate level students have made models with these supplies and tools 
and all of them have taken away something meaningful related to their existing level of knowledge.  

 
 

1. Introduction 
 
Inspiration to produce these simple stick models came from Ron Resch, my Ph.D. thesis advisor, 

with his intriguing film entitled “The Paper and Stick Thing Film” [1]. My investigation into building 
stick models includes an interest in using them in the class room. With some preparation of materials 
before the class, these models can be built in class. The supplies are widely available and inexpensive, 
and the tools exist in most home tool boxes. 
 

It is important to think of a physical model of a regular polyhedron as a “sketch” of the concept 
for that polyhedron. There is perfection associated with a regular polyhedron which makes it impossible 
to achieve with any physical materials. Failure to meet perfection is true no matter how precise the 
physical pieces are for building the model. Consequently, the less exact the pieces become, the more of a 
“sketch” the model becomes. However, these “sketches” support the concept and are useful examples for 
discussing many geometric relationships. 
 
  My models are all based on the Platonic solids. They serve as a significant foundation for the 
study of three-dimensional space [2]. The better a student understands these models, the better that 
student is able to understand and imagine more sophisticated concepts about three-dimensional space. 
Additional understanding of these models is achieved by adding the sense of touch to the sense of sight. A 
student who is able to handle these models, reinforces their knowledge gained through sight. The size of 
the models is also important. It has been studied by J.J. Gibson, [3] that a model which is held in the 
hands provides insight. A model that is approximately a handful, is better than one that is considerably 
smaller or considerably larger [3]. A model the size of a students hand can be quickly rotated providing 
many views. A geometric relationship that exists in many places in a model can be seen nearly 
simultaneously. This multiplicity of views reinforces both the local and global nature of geometric 
relationships. 
 Regular polyhedron models have a very simple definition. A regular model consists entirely of a 
single-sized regular polygon, whose edges are all the same length. All vertices of a regular solid have the 
same number of regular polygons or edges meeting at that vertex. The number of edges meeting at a 

  655

mailto:mcdermott@chpc.utah.edu


vertex is the degree of that vertex. Each vertex looks the same as every other vertex of a regular solid. 
Therefore, once a single vertex is made for a model the remaining vertices of that model are all the same. 
This condition implies that such vertices have equal solid angles. In Coxeter’s Regular Polytopes [4], 
page 15, it states that solids with regular faces and regular solid angles are regular solids. 
 

The remainder of this paper provides a list of supplies, tools, and directions for constructing stick 
models related to Platonic solids. The models serve to highlight the Platonic solids, their mid-edges, their 
mid-faces and their mid-cell, as well as, provide views of their dual polyhedron. 
 
 

2. Supplies and Tools 
 

Supplies for these models consist of thin bamboo shish kebab skewers and three sizes of vinyl 
tubing. Sticks were purchased from a variety of supermarkets, and come in a standard length of 
approximately 10 inches. Any length of stick in this vicinity can serve to build these models. The vinyl 
tubing can be purchased from a variety of hardware stores. The size of the tubing used relates to the 
degree of the vertices for the model. Tubing measuring ¼” is used for degree three vertices, with ½” 
tubing used for degree four vertices and ¾” tubing used for degree five and degree six vertices. 
 

A ruler is used for measuring the sticks. A clipper is used to cut the sticks. A scissor is use to cut 
the tubing and a punch is used to make holes in the tubing. Once a stick is cut to length it becomes an 
edge in a model and is referred to as an edge for the remainder of this paper. The strength of your grip 
comes into play when cutting the sticks. Different people may well decide on different tools for this 
repetitive task. A scissor with blades of approximately 4” will successfully cut the vinyl tubing. The 
tubing is cut producing a ring of tubing approximately ¼” in length. For the remainder of this paper this 
ring of tubing will be referred to as a vertex. A leather punch with a single #6 size punch can be found at a 
crafts store. It is used to make holes in the vinyl tubing, so that edges easily insert into the holes to create 
a vertex. It is best if the size of the hole and the size of the stick are closely matched so that the tubing 
will serve to hold the sticks firmly, and do not easily slide out of the hole. Also the size matching allows 
the stick to be easily inserted into the ring.  
 
 
3. Platonic Solids, High-Lighting Their Mid-Edges, Mid-Faces, Mid-Cells and their Duals. 

 
3.1.  Tetrahedron.  I started my stick models with the most basic of regular Platonic solids, the 
tetrahedron. I cut 6 sticks 8 3/4” long for the six edges and cut four pieces of ¼” tubing for the 4 degree 3 
vertices. I used the punch to make three evenly spaced holes around the ring of tubing at approximate 120 
degree separation between the holes in each of these 3 vertices. With these edges and vertices, I 
assembled a model. This model, although very simple, served to establish an approach for building more 
complex models. I started by inserting three edges into one vertex Figure 1a. On the end of each of these 
three edges I placed a vertex Figure 1b. An edge was inserted between two of these three vertices, Figure 
1c. I inserted another edge into the remaining hole of one of those vertices, and placed the other end of 
that edge into a hole of the remaining vertex Figure 1d. Now only one edge remained and two holes 
remained in two vertices. When this final edge was inserted into the final two holes of those vertices a 
tetrahedron was formed Figure 1e. 
 
Note: A finished tetrahedron can be adjusted to more closely approximate the ideal of a regular 
tetrahedron. Take a close look at each of the vertices to adjust the position of the edges within the hole of 
the vertex so that the ends of these edges closely resemble edges that meet at a theoretical point in the 
center of this vertex Figure 1a. Repeat this observing and adjusting of the remaining vertices, and your 
model will have an appearance closer to the ideal.  
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   (a)   (b)            (c)                   (d)             (e) 
 

Figure 1: 1 vertex (a), 3 edges  (b), 4 edges  (c), 5 edges  (d), a tetrahedron (e). 
 
3.2.  Mid-Edge Tetrahedron. The next model built drew the viewer’s attention to the mid-edge of the 
tetrahedron. I cut 6 11½” edges and 4 degree 3 vertices. In addition, 12 5¾” edges were cut, as well 6 
degree 6 vertices were cut and punched from ¾’ tubing. Before assembling the tetrahedron, each edge of 
the tetrahedron had one of the degree 6 vertices slide onto each edge so that the vertex was positioned 
near the middle of the edge, Figure 2a. Holes on opposite sides of each vertex were used with an 11½” 
edge. Once each edge had a vertex positioned near its mid-point a tetrahedron was assembled. The half-
edges were inserted into the holes of the mid-edge vertices Figure 2b. An octahedron is formed with 
these 12 edges Figure 2c. 
 
 

                                     
        (a)                     (b)                              (c) 
 

Figure 2: vertex at mid-edge (a), vertex, full-edge & half-edges (b), tetrahedron & octahedron (c) 
 

3.3.  Mid-Face Tetrahedron.  The next model drew attention to the mid-face of the tetrahedron. This 
model consisted of 6 11¼” edges, 12 6½” edges, 6 3¾” edges and 8 degree 6 vertices. Four of the 8 
vertices were combined with the 6 shorter edges to form a tetrahedron as seen in the center of Figure 3a. 
These edges will use every other hole in the degree 6 vertices. Each of the 12 mid-length edges will have 
one of their ends inserted into the open holes in the 4 degree 6 vertices of the recently assembled smaller 
tetrahedron. These edges will be collected into groups of three and then inserted into the remaining 
degree 6 vertices. Finally, the long edges were inserted into the open holes of the 4 degree 6 vertices to 
form an outside tetrahedron Figure 3a. 
 
3.4.  Mid-Cell Tetrahedron.  The next model drew the viewer’s attention to the mid-cell of the 
tetrahedron. This model had 6 9 ¼” edges, 4 6” edges, 5 degree 4 vertices. The 6 longer edges and 4 
degree 4 vertices were assembled into a tetrahedron Figure 3b. The remaining 4 shorter edges would 
have one end inserted into each of the 4 vertices of this tetrahedron. The 4 free ends of these shorter edges 
were inserted into the remaining degree 4 vertex. 
 
3.5.  Dual Tetrahedron.  For this model 6 11” edges and 24 5½” edges were cut with 8 degree 3 vertices 
and 6 degree 8  vertices. This assembly is very similar to the Mid-Edge tetrahedron assembly previously. 
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On 6 of the longer edges place a degree 8 vertex near the mid-edge Figure 3c. These 6 edges were 
assembled into a tetrahedron with 6 degree 3 vertices. With 12 of the shorter edges were inserted into the 
degree 8 vertices as in Figure 2c. The remaining 12 shorter edges will be inserted into the 4 degree 3 
vertices in groups of three. Their free ends were inserted into the degree 8 vertices to form a second 
tetrahedron that was the same size as the initial tetrahedron for this model. 
 
 

                                    
   (a)                      (b)                       (c) 

 
Figure 3: mid-points of faces (a),  mid-point of fcell (b),  stella octangula (c) 

 
When a single tetrahedron is joined together with a second tetrahedron that is identical in size in 

the manner described above a stella octangula is formed. This model is also the stellation of a regular 
octahedron. A stellation is formed when non-adjacent faces are extended so that they intersect each other 
and the edges resulting form star polygons as in Coxeter [4] Section 6.2 Page 96. 
 
3.6.  A Tetrahedron Inside a Cube and that Cube Inside a Dodecahedron.  For this model there were 
6 6 7/8” edges with 4 degree 9 vertices to build an initial tetrahedron. Use every third hole in these 4 
vertices. Subsequently, 12 5 1/8” edges were cut with 4 degree 6 vertices. Three of the shorter edges were 
inserted into each of the degree 3 vertices forming a corner Figure 4a. Each of the three free ends of this 
corner were inserted into every third open holes of the 4 degree 9 vertices on one face of the tetrahedron 
Figure 4b. When this model is completed there is a cube outside of a tetrahedron. 
 
 To form a dodecahedron outside this cube 30 2 7/8” edges were cut along with 12 degree 3 
vertices. Five of these shorter edges and two degree 3 vertices formed a winged edge assembly Figure 4c. 
The four free ends of this winged edge assembly were inserted into open holes on the four vertices on one 
face of the cube. The central edge of the winged edge assembly needed to alternate its direction so that 
there are five of these shorter edges surrounding a single edge of the cube Figure 4d. These five shorter 
edges combine to form a pentagon and the twelve edges of the cube are inside twelve pentagons that form 
a regular dodecahedron outside the cube Figure 4d. 
 
 

                         
       (a)                   (b)        (c)           (d) 
 

Figure 4: cube corner (a),  cube outside (b), winged edged (c), dodecahedron outside (d) 
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3.7.  Octahedron, Icosahedron, Tetrahedron with octahedron and icosahedron inside.  Building an 
octahedron with 12 edges and 6 drgree 4 vertices Figure 5a and an icosahedron with 30 edges and 12 
degree 5 vertices Figure 5b were very similar to building the initial tetrahedron. Taking the model from 
Figure 2c with the octahedron inside the tetrahedron an additional polyhedron was built inside this 
octahedron. For the icosahedron 12 degree 6 vertices and 30 3 5/16” edges cut. For this model the degree 
6 vertices will be placed on an edge of the octahedron but not at its mid-edge. This vertex will be placed 
at a location that divides the edge into the golden ratio (approximately 3½” and 2¼” for the 5¾” edge). 
Within each of the 8 faces of the octahedron a face of an icosahedron was formed. Near each of the 6 
vertices of the octahedron 2 faces of the icosahedron were formed for a 20 face icosahedron Figure 5c. 
 
 

   
            (a)           (b)                  (c) 
 

Figure 5: octahedron (a), icosahedron (b), tetrahedron , octahedron, icosahedron (c) 
 

3.8.  Stellated Dodecahedron & Stellated Icosahedron.  Just for fun two stellations were built for a 
dodecahedron and an icosahedron Figure 6. These models were spatially and visually quite interesting as 
well as being less simple to build from shish kebob stick for edges and holes punched in vinyl tubing 
rings for vertices. Each has 30 edges, where one has 12 degree 5 vertices  and the other has 20 degree 3  
vertices. These models were assembled starting with a single vertex and observing star polygons. 

 
 

                                 
         (a)                          (b) 
 

Figure 6: stellated dodecahedron (a), stellated icosahedron (b) 
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4. Handling Stick Models 
 

 Each of the models in this paper has multiple axes of symmetry. The presence of so much 
symmetry leads the students into spending a considerable amount of time with the handling of these 
models. Using index fingers to help orient these models aligns the different axes of symmetry for vertices, 
edges and faces of each model to more clearly observe the symmetry. These models can have a vertex, an 
edge or a face set on a flat surface to study them individually. Some models can have a set of vertices set 
on a flat surface and studied from this orientation. All in all, a long time can be spent with this set of 
models observing them individually and using them as examples for other concepts to be studied by 
students at all levels of their education. 
 

 
5. Conclusion 

 
 I have presented these simple stick models to students ranging from elementary school to 
graduate school for a period of more than twenty years. These presentations have always been well 
received by both the students and their teachers. The teachers have shown their appreciation by wanting 
to keep the models to hang in their classrooms and serve as constant examples for future study. Recently, 
I presented the models to eighth grade students at the McGillis School in Salt Lake City, Utah. This class 
has fifteen students interested in learning and enthusiastic about a presentation that includes models. They 
listened to my words about each model, but they were most interested in their opportunity to handle the 
models. I have been giving presentations to this group of students since they were in pre-school as our 
daughter is a member of this class. 
 

Each group of students, depending on their individual maturity and their educational experience, 
takes away something different, even though the materials are exactly the same and the words used are 
very much the same. Emphasizing the tactile experience of handling each of the models provides the 
students with a recognizably different experience than merely viewing three-dimensional images of the 
regular solids on a piece of paper or on a computer screen 
 

With the stick models, as opposed to the paper models [2], the students think of themselves as 
having x-ray vision, seeing from the near side to the far side of the models. Also, students can visually 
and physically align geometric relationships from both the near side of the model and the far side as they 
are study each of the models individually. 
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