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Abstract 
 

This paper represents some small finite groups as groups of transformations of a compact surface of small 
genus. In particular, we start with a designated pair of regions of this surface and each region is labeled with 
the group element, which transforms the designated region into it. This gives a portrait of that finite group. 
These surfaces and the regions corresponding to the group elements are shown in this paper. William 
Burnside first gave a simple example of such a portrait in his 1911 book, “Theory of Groups of Finite Order”. 

 
Introduction and Historical Perspective 

 
There are many ways to draw a picture of a finite group. One possibility is to let the group 

elements be represented by one to one transformations of the points of a surface. This idea was developed 
by Dyck [3] and elaborated further in Burnside [1]. Burnside started with circles in the plane and the 
transformation was inversion in the circle. Inversion in a circle can be defined in a Euclidean plane with a 
“point at infinity” appended. The plane with a “point at infinity” can be identified with the Riemann 

sphere, Σ.  It can be shown that inversion in circle C is given by the equation 
bza
czbzIC +⋅

+⋅−=)( , where 

C has equation 0=+++ czbbzzaz  with a and c real and b complex. This map is an anti-
automorphism of the Riemann sphere (Jones and Singerman [4], p. 29).  

The group generated by these transformations is determined by the relationship between the 
circles. For example, starting with a circle and a straight line tangent to it (a circle of infinite radius), the 

set of inversions of the circles in each other 
gives the diagram given in Figure 1 
(Burnside [1], p. 377). The transformation, S 
is given by composing first a reflection in 
the line and then an inversion in the circle. 
The plane is divided into black and white 
regions as in figure 1 and each 
transformation takes the white regions into 
themselves and the black regions into 
themselves. If we start with a white region 
labeled E for the identity, then the region 
into which E is transformed by Sn can be 
labeled by that group element. This gives a 
nice graphical picture of the integers        

  Figure 1, Burnside [1], Page 377.        as a group of transformations. 
The same ideas are used in Burnside [1, p. 379] to construct a free group on n generators, Fn. This 

construction fills up a unit disk with black and white regions and the transformations are given in the 
same way. We have used Geometer’s SketchPad to reconstruct part of this portrait of a free group on two 

  131



generators (Figure 2). This figure is very similar to the figure in Burnside [1], Page 380. Each “triangle” 
is bounded by arcs colored red, blue or black in our sketch. Inversion in any single arc will take a shaded 

region into a non-shaded region and vice 
versa. Therefore, each group action is 
represented by the composite of two such 
inversions. Inversion through first a red arc 
and then a blue arc corresponds to multiplying 
on the left by the generator S. Multiplying on 
the left by the generator T corresponds to 
inversion through black and then red. 
Multiplying on the left by ST corresponds to 
inversion through black and then blue. If we 
considered inversion through a black arc first 
and then a blue arc as the inverse of a single 
generator, R, then we could interpret this 
picture as a portrait of a group with 
presentation 1|,, =rsttsr . 

Now suppose that we have a finite 
group, G, generated by n generators. This 
group is the image of Fn by a normal 
subgroup, N. After associating an element of 
Fn to each region, the final step is to identify 

  Figure 2, Portrait of a Free Group     all regions with labels from the subgroup, N. 
After this identification, we have the finite group, G, represented as a group of transformations on a 
surface of some genus. For n = 3, this is really the image of a quotient of a triangle group, 

1|,,),,( =====Γ rsttsrtsrwvu wvu . The transformation of inversion in a circle is an anti-

analytic transformation of the Riemann sphere into itself. Therefore, any group represented in this way 
acts on a Riemann surface in an orientation-preserving way. The next section will attempt to give some 
portraits of small groups. 

 
Group Portraits 

 
Every compact Riemann surface with genus g is topologically equivalent to a sphere with g 

handles or equivalently, a sphere with g holes in it. This surface may be drawn and colored with white 
and black regions that represent a finite group of 
transformations, which act on the surface. Figure 3 gives 
Burnside’s example of the picture of the group of 
quaternions, Q. The quaternions are the smallest group 
of strong symmetric genus 2. They also have a 
presentation as an image of the triangle group )4,4,4(Γ . 
This is a very symmetric presentation and that makes it 
easy to construct the portrait. The other groups of strong 
symmetric genus 2 are the dicyclic group, 3DC , the 
quasidihedral group, 4QD , the group )2,2|6,4( , using 
notation from Coxeter and Moser [2], )3,2(SL and 

)3,2(GL (See May and Zimmerman [5]). We consider 
the dicyclic group, 3DC  next. 

Figure 3, Burnside [1], Page 396.   
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The dicyclic group of order 12 has presentation 11236 ,,1|, −− === xxyyyxxyx . Its genus 

action is given by its presentation 2344 )(,1)(|, tsststtsts ====  as the image of the triangle 

 

 
Figure 4 – Portrait of the Dicyclic Group of Order 12 

 
group )4,4,3(Γ . The portrait of this group on a surface of genus 2 is shown in Figure 4. A red, a blue and 
a black arc of a circle bound each “triangle”. The portrait consists of 12 white and 12 black triangles and 
has 10 vertices. The triangular regions that meet at a vertex are labeled in such a way that each white 
region is related to the adjoining white regions by multiplication on the left by either S, T or ST or its 
inverse. Therefore, each vertex could be classified as an S-vertex, a T-vertex or an ST-vertex depending 
on the labeling of its bounding regions. Since S and T have order 4, each S or T vertex has degree 8. 
Since the product ST has order 3, each ST vertex has degree 6. There are 3 S-vertices and the edges 
incident to them are blue and red. Similarly, there are 3 T-vertices and the edges incident to them are 
black and red. Finally, there are 4 ST-vertices and the edges incident to them are blue and black. This 
gives 10 vertices, 36 edges and 24 faces and so the Euler characteristic is –2. 
 Finally, we construct the portrait of the “quasiabelian” group, >=< 2|2,24QA of order 16. This 
is a group of strong symmetric genus 3; it is also the rotation group of a regular map of genus 3. This 
group has presentation >===< 528 ,1|, xyxyyxyx  and it is the image of the triangle group 

)8,8,2(Γ . Its presentation as an image of )8,8,2(Γ  is >====< 22288 ,1)(|, tssttsts . The portrait 
consists of 16 white and 16 black triangles and has 12 vertices. Since S and T have order 8, each S or T 
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vertex has degree 16. Since the product ST has order 2, each ST vertex has degree 4. There are 2 S-
vertices, 2 T-vertices and 8 ST-vertices. Each ST-vertex connects only to the S and the T vertices. Each S 
or T vertex connects 4 times to the same S vertex, 4 times to the same T vertex and to each one of the ST 
vertices. This results in the portrait in Figure 5. 
 

 
Figure 5 – Portrait of the Quasiabelian Group of Order 16 

 
This gives 12 vertices, 48 edges and 32 faces and so the Euler characteristic is –4. Therefore, it may be 
drawn on a surface of genus 3. A surface of genus 3 may be constructed in many topologically equivalent 
ways. I have chosen a way where the symmetry of the construction complements the structure of the 
group. 
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