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Abstract

At Bridges 2001, Zongker and Hart [8] gave a construction for “blending” two polyhedra using an
overlay of dual spherical nets. The resulting blend, they noted, is the Minkowski sum of the original
polyhedra. They considered only a restricted class of polyhedra, with all edges tangent to some common
sphere. This note defines spherical duals of general convex polyhedra and proves that the Zongker/Hart
construction is always valid. It can be used visually, for instance, to “morph” from any polyhedron to
any other.

Polyhedra and their spherical duals

The notion of dual convex polyhedra, like the cube and octahedron, or the dodecahedron and icosahedron, is
familiar. The faces of the polyhedronP correspond to vertices of its dual and vice versa. The combinatorics
are thus clear, but in general (moving away from the Platonic solids) it is not always clear what geometry to
give the dual. Indeed, most useful for us will be a dual which is itself not a convex polyhedron, but instead
a network drawn on the surface of a sphere. We still consider it a dual of the original polyhedronP because
it does have the dual combinatorics: a node for each face ofP , an arc for each edge ofP , and a region on
the sphere for each vertex.

The nodes of this spherical dual are easy to find: each facef of P has an outward unit normal vectorνf .
Sinceνf is a unit vector in space, it can be viewed as a point on the unit sphere. We can think of this
correspondance as follows: put a flashlight down onP such that its base rests flat onf . Its beam will then
shine outwards in the normal direction, and it will hit the celestial sphere in the pointνf .

Now consider an edgee of P . It lies between some pair of facesf andf ′ of P . If our flashlight is onf ,
and we tip it slowly across the edgee towardsf ′, the beam will trace out an arc in the celestial sphere. This
will be the geodesic or great-circle arcηe from νf to νf ′ . Supposede is the edge vector ofe (the difference
between the endpoints ofe). Then the arcηe lies exactly in the great circle perpendicular tode. (We can
check this as follows: the face normalsνf andνf ′ , being the endpoints ofηe, both lie on this circle, but they
are also both perpendicular tode.) The length of the arcηe is exactly the exterior dihedral angle ofP alonge
(the angle betweenνf andνf ′).

The nodes and arcs we have described form the network on the sphere that we call thespherical dualP̃
of P . (By analogy to smooth surfaces, where the normal vectorν is given by the so-called Gauss map, this
spherical dual is sometimes also called the Gauss image ofP .) The networkP̃ cuts the sphere into regions
corresponding to the verticesv of P . Indeed, the regionρv associated to a vertexv is the one bounded by
the arcsηe corresponding to the edgese incident tov.

Let us recall the definition ofsupporting plane. A supporting plane through a pointp on P is a plane
such that all ofP lies to one side (or in the plane). At a point within a facef , the unique supporting plane is

  117



the one with normalνf . At any point along an edgee, there is a one-parameter family of supporting planes;
their normals are the points along the arcηe. At a vertexv there is a two-parameter family of supporting
planes: holding our flashlight atv, we can tip it to be perpendicular to any of these planes. The normal
directions (in which the flashlight then shines) fill out the regionρv. The area of this regionρv of P̃ is what
one might call theexterior solid angleof P atv or theGauss curvatureof P atv.

Note that, by the combinatorial duality, ann-gon facef of P corresponds to an-valent nodeνf in P̃ :
indeed there are exactlyn ways to tip our flashlight offf . Similarly, if k edgesei meet at the vertexv of P ,
the the regionρv on the sphere hask sides, namely thek arcsηei .

We can consider two ways in which a polyhedron can degenerate to be lower-dimensional. First, a
planarn-gon in space, with its two sides thought of as two faces (with opposite normals), forms adihedron;
its spherical dual has two antipodal nodes±νf , connected byn arcs. Second, a line segment in space has
no faces but has an edge with vector, say,de; its spherical dual has no nodes, but consists of the entire great
circle perpendicular tode.

Figure 1: The spherical dual of a cube (left) is a network of three perpendicular great circles (center) which could
be called a spherical octahedron. (Our spherical figures were drawn with the program “Spherical Easel” [1].) The six
nodes of the network are the normals to the six cube faces; the twelve arcs correspond to the cube edges; these cut the
sphere into eight congruent triangular regions corresponding to the cube vertices. The same network is also the dual
of any rectangular parallelepiped (right). We can introduce labels on the arcs of the dual, recording the edge lengths
of the original polyhedron, to distinguish these possibilities.

Recovering a polyhedron from its spherical dual

As a very simple example, the cubeC and its dualC̃ are shown in Figure 1. The dual consists of three
great circles on the sphere, in the coordinate planes. These meet at six nodes (the north and south poles plus
four along the equator) corresponding to the the cube’s face normals. Just as the usual dual of a cube is an
octahedron, this network̃C could be called as a spherical octahedron; indeed it is the radial projection of a
regular octahedron to its circumscribed sphere.

Given this dualC̃, can we reconstruct the original cubeC? We know that if any polyhedronP has
dual C̃, thenP must have six faces, with opposite pairs parallel to the coordinate planes. But any (axis-
aligned) rectangular parallelepiped satisfies this conditions, and will indeed have this same dual networkC̃.

In general, given a spherical networkN with convex regions, we can look for polyhedraP with dualN .
Any such polyhedron will be the intersection of halfspacesHν , one for each nodeν of N . We know thatHν

will be bounded by a planepν with unit normalν, but the location of this plane is not usually uniquely
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determined. Given a polyhedronP , we can move its faces inwards or outwards a bit, keeping them parallel.
As long as we don’t move any face so far that the combinatorics ofP changes, the result is new polyhedron
with the same spherical dual̃P .

Note, however, that there are also rigid examples, like the octahedronO of Figure 2. It is uniquely
determined (up to homothety) by its spherical dualÕ, since its combinatorics would change immediately,
no matter how little we moved any face.

Figure 2:The octahedron (left) is uniquely determined by its spherical dual (right), since moving any face inwards
or outwards would change the combinatorics. The dualÕ, a spherical cube, has eight nodes (in the body-diagonal
directions) and twelve arcs, dividing the sphere into six congruent square regions. Here, the only legal edge-labelings
use equal labels on all twelve edges.

In general, though, to recoverP from P̃ we need some further information. One possibility would
be to record, for each nodeνf , the distance from the origin to the plane of the facef . This would make
the spherical dual carry exactly the information of the so-calledsupport functionof P . That is, for any
direction we would know the distance from the origin to the supporting plane toP in that direction. It is
well-known that any convex body is determined by its support function. (See for instance [7].) Given a
spherical network, the various polyhedra with that dual correspond to the different labelings of the nodes.
An n-faced polyhedronP is part of a large family with dual̃P ; any small adjustment of then labels onP̃
would lead to a particular member of this family.

Recent work of Fogel and Halperin [3] develops an exact algorithm for computing Minkowski sums
based on spherical duals. (Actually, for computational efficiency, they project the dual radially onto a cube.)
In order to be able to recover polyhedra from the dual networks, they store quite redundant information:
namely, for each region of the dual, the three coordinates of the original vertex in space.

Zongker and Hart [8] suggest yet another way to encode the extra information needed to determineP
from P̃ . They record, for each arcηe, the length̀ e of the corresponding edgee. Since a polyhedron has
more edges than it has faces, this leaves us with more labels than we need. That is, not every edge-labeling
on P̃ corresponds to a polyhedron; instead there are necessary conditions on these labels. However, we will
show that certain constructions (in particular the overlay of two labeled dual nets) always do give correct
labelings that correspond to polyhedra.

To understand the conditions on the labels, think first about a single arcηe from νf to νf ′ , with label`e.
It must correspond to an edgee of length`e in the direction perpendicular toνf andνf ′ . That is, the edge
vectorde is known to be the vector of length̀e in the direction of the cross productνf × νf ′ . Note that
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this direction lies tangent to the sphere atνf , perpendicular to the direction in which the arcηe leaves the
nodeνf .

Of course, because the facef is a closed polygon, the edge vectorsde aroundf must sum to0. Equiv-
alently, think of the weights̀e as tensions in the arcsηe. The closure condition aroundf becomes the
following condition atνf : the tensions in all the arcsηe sum to0. (Since this is a vector equation in the
tangent plane atνf , it really represents two linear conditions on the incident labels there.)

Minkowski sums

Given two polyhedraA andB, their Minkowski sumA + B := {a + b : a ∈ A, b ∈ B} is again a
polyhedron. It has faces parallel to the faces of the original polyhedra, and additional faces which are
parallelograms generated by one edge fromA and one fromB.

As above, we will allow a segment in space to count as a degenerate polyhedron. Then the Minkowski
sum of two segments is a parallelogram, the sum of three (linearly independent) segments is a parallelepiped,
and in general the sum ofk segments is a special kind of polyhedron called a zonohedron. Unless two
of the segments are collinear, each edge of the zonohedron is parallel and equal in length to one of the
original segments. Unless three of the segments are coplanar, the faces of the zonohedron are parallelograms.
Figure 3 shows two zonohedra which have the same duals as certain Archimedean solids.

Figure 3: The zonohedronT (left) is a “stretched” truncated octahedron. Its spherical dual (center) is obtained by
extending the arcs of the spherical cubeÕ in Figure 2 until we have six full great circles. The truncated octahedron
would have equal weights on all dual arcs; we obtain the stretched versionT by varying the weights. The stretched
truncated cuboctahedron (right), also a zonohedron, is the Minkowski sum ofT with the box of Figure 1(right). Its
dual (not shown) is obtained simply by overlaying their two duals.

We have noted that the spherical dual of a segment should be taken as the great circle perpendicular to
this segment. If a zonohedronZ is the sum ofk segmentssi, then its dual is the great-circle arrangement
on the sphere consisting of the correspondingk great circlesci. Each great circle in this arrangement is
divided into a number of subarcs by its intersections with the other circles; these arcs correspond to a family
of parallel edges (called a zone) onZ. To recoverZ from the dual, we just need to know the length of the
edges in each zone. But that is the same as the length`i of the original segmentsi. Thus, to properly label
the dual of the Minkowski sum, we put the label`i on each segment of the great circleci.

The observation of Zongker and Hart [8] was that this overlay method works to produce Minkowski
sums in general. SupposeA andB are two polyhedra, with labeled spherical dualsÃ and B̃. Then we
construct a spherical network̃P by overlayingÃ andB̃, simply drawing them both on the same sphere,
inserting a new node wherever arcs cross. Each arcη of P̃ is part of an arc from either̃A or B̃, and inherits
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the label of that arc. In excpetional cases,η will lie along parts of arcs from both̃A andB̃, in which case it
gets the sum of those two labels.

The analysis of this construction in [8] was limited to the special case whereA andB were each mid-
scribed around some sphere (that is, had all edges tangent to that sphere). Here we show that, in fact, it
works in complete generality.

Generically, the nodes in the overlay networkP̃ either will be nodes from̃A or B̃ or will arise where an
edge ofÃ crosses one of̃B. In the first case, the node and its incident arcs and their labels are exactly the
same as seen iñA or B̃, so the closure condition is satisfied. In the second case, the nodeν has four incident
arcs. They come in two opposite pairs, with equal labels`i on either pair. Clearly, this node is the dual of a
parallelogram, and the closure condition is satisfied by symmetry.

In special cases, a node of̃A may lie exactly on an arc or node of̃B. But then the closure condition
in P̃ is just the sum of the closure conditions from these two overlapping nodes. The case where an arc ofÃ
(partially) overlaps an arc of̃B also causes no problems, as long as we have used the sum of the original
labels on the overlap, as specified above.

Since the closure conditions are satisfied everywhere, the labeled networkP̃ does correspond to a poly-
hedronP , the Minkowski sum ofA andB.

Connections and applications

This construction could be used to morph between any two convex polyhedraA andB. For timet ranging
from 0 to 1, we would use the weighted sumPt := (1 − t)A + tB. These intermediate polyhedraPt all
have the same spherical dualP̃ , obtained by overlaying the duals̃A andB̃. All we need to do ast varies is
to linearly interpolate the labels.

As an example, consider a symmetric pattern of great circles drawn on the sphere as in Figure 4, each
tilted slightly from the equator. It is the dual to a so-called “polar zonohedron” (see [2, 6]). Suppose we

Figure 4:The symmetric pattern of great circles (left) is the spherical dual of a polar zonohedron like the one shown
(right). Such a zonohedron is by definition generated by segments equally spaced around a cone.

place two different polar zonohedra in space with their axes perpendicular. Morphing between them the
results in the sequence shown in Figure 5.

Aside from zonohedra, another interesting class to consider for this duality construction is deltahedra.
A deltahedron is a polyhedron with equilateral-triangle faces. Its dual is then a network of great-circle arcs
meeting in threes at equal (120◦) angles. Such a network is reminiscient of a two-dimensional bubble cluster,
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Figure 5:The polar zonohedra at left and right are generated by segments equally spaced around a cone. They have
been placed with perpendicular axes. In the middle we see two intermediate stages of the morph between them.

and indeed the eight possible such networks describe the only candidate singularities for three-dimensional
bubble clusters. These ideas generalize to arbitrary higher dimensions [5] where the classification of such
soap-film singularities is not yet complete.

From a more abstract point of view, our spherical dualP̃ with arcs labeled by edge lengths is simply the
generalized mean curvature measure of the polyhedronP in the sense of Minkowski mixed volumes. (See
for instance [4].) The overlay construction is then simply explained by the known fact that such measures
are additive under Minkowski sum. It seems to be an open problem in general, however, to decide which
measures on the sphere can arise as the generalized mean curvature of some convex body.
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