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Abstract

This paper illustrates a number of ways that recursion and replacement rules can be used to create aesthetically pleasing
computer generated pictures. Starting with imitation of forms found in nature, we move to more abstract designs, first
designs derived from the nature imitations, and finally a purely abstract example.   

1. Introduction

“In  order  to  understand  recursion,  one  must  first  understand  recursion”,  from Wikipedia,  the  free
encyclopedia

Many of the forms and shapes  found in  nature  exhibit  some form of self-similarity; the larger  form
appears to contain smaller copies of itself at different scales. Examples abound in the plant world; we see
it also in mountains, clouds, the branching structure of rivers and blood vessels, patterns on animal skins,
etc.  Nature imposes  restrictions  on growth rules,  but  that  doesn’t  mean that  the artist  needs to.  First
imitating the forms and shapes in nature, the artist finds herself changing a shape, a scale or a color to
produce  a  more  abstract  but  visually  appealing  picture.  We  will  start  with  algorithms  that  produce
imitations  of  forms  found  in  nature;  next  we  combine  them into  what  a  colleague  of  mine  termed
“Mathscapes”, and finally we will abstract the forms into visually appealing designs. 

In mathematics and computer science a recursive function is a function that calls itself; by calling
itself  more  than  once  a  function  can  produce  multiple  copies  of  itself.  This  makes  it  an  excellent
technique  for  creating  figures  which  are  defined  by  “replacement”  rules.  Consider  the  following
examples of replacement rules: In each of Figures 1 and 2, start with the leftmost figure. Then replace it
by the second figure. This gives you the replacement rule. For example, in Figure 1 start with a line
segment. At step 2 replace the line segment with 5 line segments as pictured, each 1/3 the length of the
original. At step n replace each segment in step n-1 with a reduced copy of the step n-1 figure. 

                                
Figure 1: Example of a replacement rule

In Figure 3 the replacement rule is a little different; it is an example of a random displacement rule.
At each step a random number is multiplied by a scale factor and then added to or subtracted from the
average of the height at the left endpoint and the height at the right endpoint; the result is assigned to the
height of the midpoint. Figure 4 shows the result of carrying out the rule until the left and right endpoints



of each interval are the same. To produce more realistic looking natural forms we make much use of
random numbers; in the example in Figure 1, instead of each line segment being 1/3 the length the length
of the segments in the previous step we could make the line length a function of a Gaussian random
variable with mean 1/3.

Figure 2: A geometric replacement rule

Figure 3: A random replacement rule

Figure 4: Result of replacement rule in Figure 3 

2. Imitating forms found in nature

2.1. Plant forms. We start with plant forms; the  technique of replacement  rules could  almost have been
invented by observing an abstract tree structure. There are many excellent publications describing
various
 

               
       
monochasium dichasium   spike   raceme              umbel                     panicle

Figure 5: Some common inflorescences



             models of plant growth. All involve some sort of recursion. Teaching computer graphics, I was on the
lookout for examples of recursion and examples that illustrate the uses of simple trigonometry. In [8] I
found simple stick diagrams of the common inflorescences; a few of them are shown in Figure 5.

Figure 6 shows the compounding of some of the inflorescences.  These pictures were all done with
simple recursion.

    
    monochasium             dichasium                        umbel                             panicle

Figure 6: Compound inflorescences

Figure 7 shows some imaginary  inflorescences  obtained  by using random numbers to vary segment
lengths and angles and taking artistic liberties with the above.

.

Figure 7: Imaginary inflorescences 

Another model for plants can be found in the article by deReffye et al [6]. In this model at each stage
of growth a “bud” can do one of  three things: (1) branch,  (2) flower  and  ultimately die  or  (3) sleep
(do 

              



Figure 8: Trees modeled using deReffye’s method
nothing until  the next  stage).  A probability is  assigned to  each of  the three  outcomes,  such that  the
probabilities add up to 1.  We start with a single bud; at each stage, for each bud that is still alive, we
generate a random number between 0 and 1; the number determines the next state of that bud. For added
realism we can make the probabilities functions of time, so that at later stages the probability of a bud
dying is higher. Figure 8 shows three imaginary "trees" using a branching number of 2, that is, when a
node branches  it  produces  two new branches.   The exact  same program drew the  three  trees;  using
probabilities and random numbers we can make it look as if the three trees come from the same family,
but are not identical.

Another  of my favorite  ways to model  botanical  growth is  a  method called  L-systems,  or  string
rewriting. It was discovered by Aristid Lindenmayer, a Dutch biologist who had the remarkable idea of
using  concepts  from formal  language  theory  to  describe  plant  growth,  and  developed  by Premislaw
Prusinciewicz [9]. In this model each geometric part of the plant is assigned a character. Here is a simple
example:  let  I represent  an internode,  L a leaf  and F a flower.  We use  brackets  and parentheses  to
indicate branches. Square brackets enclose a branch to the left, parentheses enclose a branch to the right.
For  example,  the  string  of  characters  I[I[L](L)IF]I(II(L)IF)IF might  represent  the  imaginary  plant  in
Figure  9a.  At  each  stage  we use  a  set  of  rewriting  rules  (productions)  to  successively  replace  each
character by a string of characters. Figure 9 illustrates several stages in the development of an imaginary
plant using this method.

              a                                  b                                    c                                    d
Figure 9: Stages in an imaginary plant resulting from string rewriting

Another method of modeling plant growth and other branching phenomena uses a stochastic matrix
of  probabilities;  this  method  is  reminiscent  of  a  Markov  chain.  Space  considerations  preclude  a
description here, but the interested reader can find more in [5].

2.2.  Mountains  and clouds.   The midpoint  displacement  rule  illustrated  in  Figures  3  and 4 can  be
extended to a two dimensional model in which we obtain a height field over a two-dimensional grid. We
can use this to model both mountains and clouds. To model clouds, we assign a ramp of colors to the
heights,  while  to  model  mountains  we  use  some  trigonometry  and  calculus  to  project  the  three
dimensional height field onto a two dimensional surface. 

First we outline the recursive midpoint algorithm for generating the height field. We start with a 2n+1
by 2n+1 grid of points in the plane, where n could be 9, for example, for a 513 by 513 grid. We assign a
number to each of the 4 corner points. At step 1 we assign a value to the point labeled 1 in Figure 10a;
the value is the average of the numbers at the 4 corner points plus a random number. At step 2 we assign
values to the points labeled 2 in Figure10b, by taking the average of the three closest previously assigned
points plus a random amount. Figures 10c and 10d show the order in which the next several points are
assigned. At each stage the random amount is scaled down.

Once  the  height  field  is  generated  we can  render  it  as  three  dimensional  mountains  using some
calculus and trigonometry, illustrated in Figure 11a, or we can assign a continuous ramp of colors to the
heights and render it as clouds, illustrated in Figure 11b. By changing the scale factor that we use in



scaling down the random amount that we add at each stage, we can produce sharp fractal-like mountains
and clouds or soft rounded mountains and cumulus clouds.

 
        Figure 10a          Figure 10b   Figure 10c   Figure 10d

Can you guess which pixels will be assigned at Stage 5?

  Figure 11a: 3-d rendering     Figure 11b: 2-d rendering

3. Mathscapes

Figure 12:   “Mathscape”



Soft,  rounded  mountains,  like  those  found  in  Vermont,  can  also  be  produced  by  using  sums  of
trigonometric functions with randomly assigned coefficients, which can then be projected onto a two-
dimensional picture using the same rendering technique that we used for the fractal mountains generated
by the midpoint algorithm.

In Figure  12, “Mathscape”,  I have combined the  recursive  algorithms for  clouds,  mountains  and
various imaginary plant forms into one picture. 

4. “Persian” Rugs

The midpoint algorithm that produced the clouds and mountains can also be used to generate abstract
designs that resemble Persian rugs. Instead of adding a random amount at each stage, we add an integer
amount based on some function of the previously assigned values.  Then to each integer we assign a
color. For example, in the first stage of the recursion we assigned a value to the middle point based on
the values assigned to the corner points. To design a “Persian” rug, since we want symmetry, we would
initially assign the same integer value to the four corner points. To get the value for the center point we
let x1 be the value assigned to the upper left corner, x2 the value assigned to the upper right corner, x3 the
value assigned to the lower left corner and x4 the value assigned to the lower right corner. An example of
a function that assigned the value to the midpoint might be f(x1, x2, x3, x4) = (x1 + x2 + x3 + x4)/ 3 mod 17.
Actually I discovered a simpler algorithm [4]  which goes something like this: assign integers to a set of
k+1 colors. Color all points on the borders of the grid color j, j € {0,..,k}. As in the first method, make up
a function f of 4 integers that returns an integer. Apply f to the 4 corner points resulting in  an  integer  m
between  0  and k. Color all points  on the  two  lines connecting the midpoints of the opposite borders
the  

         
Figure 13: “Persian” recursion

new color m, then recursively repeat the process for the four new squares until all pixels have been
colored in. Some examples can be seen in Figure 13.

5. Using recursion to produce abstract designs

Looking at the replacement rule illustrated in Figure 2 we see that it seems to say: start with a circle,
replace the circle with four smaller circles tangent to each other and tangent to the original circle. Then at
the next stage repeat the operation with each of the new circles. We can generalize this procedure using
what mathematicians call an  Iterated Function System  (IFS). This is a collection of n ≥  2 contraction
mappings of a set into itself. For example, suppose we have a collection of transformations {Tj}, each
one  mapping a  circle  to  a  smaller  circle  contained  in  the  original  circle.  A recursive  algorithm for
drawing a design such as the one in Figure 2 might look like this: 



Function Recurse(step, center, radius ){
If (step == 0){

Draw the circle with center center and radius radius;
}
else{

for (j = 1; j <= number of transformations; j++){
find newcenter, newradius, the center and radius of Tj(C)  ; 
Recurse(step-1, newcenter, newradius);

}
}

}

The limit set of an IFS is the set of points that is invariant under all compositions of the contraction
mappings. In general it is a fractal. For a complete theory see [1]. To produce interesting designs, we can
just  carry  out  the  recursion  for  a  few  steps.   For  iterated  function  systems  involving  circles  it  is
convenient to use Möbius transformations which map circles to circles. 

   

Figure 14: Iterated Möbius transformations

If we  carry  out  the  recursion  suggested  by Figure  2,  we find  that   the design is not
particularly interesting.  The  transformations  that  take  the  original  circle  into  the  four  smaller
circles  are affine 

Figure 15:  Showing only selected stages of the recursion and using color in imaginative ways  



transformations; they shrink and then translate the original circle, but do not distort it. We can generate
more  varied  pictures  if  we  alter  the  original  transformations  by  composing  them  with  Möbius
transformations from the unit circle group. Transformations from the unit circle group map the unit circle
to itself, expanding it or contracting distances along the circle depending on two complex parameters. As
we iterate the distortions propagate, producing more varied and interesting designs. In Figure 14 we see
the effect of changing the parameters. We have also added to the replacement rules a central circle that is
tangent to the other four and in the rightmost picture we have increased the number of circles tangent to
the original circle to six. Figure 15 shows two renderings where we increase the number of circles to
thirteen, show only selected stages of the recursion and use color in imaginative ways. .

6. Conclusion 

Recursion  is  a  great  way  to  get  students  interested  in
mathematics and computer graphics. Students are always
amazed at how what looks like a really complicated figure
can be produced in a few lines of code. All the figures in
this  paper  except  string-rewriting  were  produced  using
simple recursion, that is, a single recursive function that
calls  itself  two or  more  times.  Nearly  all  programming
languages  support  recursive  functions.  For  future
investigations we might explore using a recursive chain.
A recursive chain is a set of two or more functions that
call each other.

           Figure 16:  Overlapping circles
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