
Recursion in Nature, Mathematics and Art
Anne M. Burns

Department of Mathematics
Long Island University

C.W. Post Campus
Brookville, NY 11548

aburns@liu.edu

Abstract

This paper illustrates a number of ways that recursion and replacement rules can be used to create aesthetically pleasing
computer generated pictures. Starting with imitation of forms found in nature, we move to more abstract designs, first
designs derived from the nature imitations, and finally a purely abstract example.

1. Introduction

“In order to understand recursion, one must first understand recursion”, from Wikipedia, the free
encyclopedia

Many of the forms and shapes found in nature exhibit some form of self-similarity; the larger form
appears to contain smaller copies of itself at different scales. Examples abound in the plant world; we see
it also in mountains, clouds, the branching structure of rivers and blood vessels, patterns on animal skins,
etc. Nature imposes restrictions on growth rules, but that doesn’t mean that the artist needs to. First
imitating the forms and shapes in nature, the artist finds herself changing a shape, a scale or a color to
produce a more abstract but visually appealing picture. We will start with algorithms that produce
imitations of forms found in nature; next we combine them into what a colleague of mine termed
“Mathscapes”, and finally we will abstract the forms into visually appealing designs.

In mathematics and computer science a recursive function is a function that calls itself; by calling
itself more than once a function can produce multiple copies of itself. This makes it an excellent
technique for creating figures which are defined by “replacement” rules. Consider the following
examples of replacement rules: In each of Figures 1 and 2, start with the leftmost figure. Then replace it
by the second figure. This gives you the replacement rule. For example, in Figure 1 start with a line
segment. At step 2 replace the line segment with 5 line segments as pictured, each 1/3 the length of the
original. At step n replace each segment in step n-1 with a reduced copy of the step n-1 figure.

Figure 1: Example of a replacement rule

In Figure 3 the replacement rule is a little different; it is an example of a random displacement rule.
At each step a random number is multiplied by a scale factor and then added to or subtracted from the
average of the height at the left endpoint and the height at the right endpoint; the result is assigned to the
height of the midpoint. Figure 4 shows the result of carrying out the rule until the left and right endpoints

of each interval are the same. To produce more realistic looking natural forms we make much use of
random numbers; in the example in Figure 1, instead of each line segment being 1/3 the length the length
of the segments in the previous step we could make the line length a function of a Gaussian random
variable with mean 1/3.

Figure 2: A geometric replacement rule

Figure 3: A random replacement rule

Figure 4: Result of replacement rule in Figure 3

2. Imitating forms found in nature

2.1. Plant forms. We start with plant forms; the technique of replacement rules could almost have been
invented by observing an abstract tree structure. There are many excellent publications describing
various

monochasium dichasium spike raceme umbel panicle

Figure 5: Some common inflorescences

 models of plant growth. All involve some sort of recursion. Teaching computer graphics, I was on the
lookout for examples of recursion and examples that illustrate the uses of simple trigonometry. In [8] I
found simple stick diagrams of the common inflorescences; a few of them are shown in Figure 5.

Figure 6 shows the compounding of some of the inflorescences. These pictures were all done with
simple recursion.

 monochasium dichasium umbel panicle

Figure 6: Compound inflorescences

Figure 7 shows some imaginary inflorescences obtained by using random numbers to vary segment
lengths and angles and taking artistic liberties with the above.

.

Figure 7: Imaginary inflorescences

Another model for plants can be found in the article by deReffye et al [6]. In this model at each stage
of growth a “bud” can do one of three things: (1) branch, (2) flower and ultimately die or (3) sleep
(do

Figure 8: Trees modeled using deReffye’s method
nothing until the next stage). A probability is assigned to each of the three outcomes, such that the
probabilities add up to 1. We start with a single bud; at each stage, for each bud that is still alive, we
generate a random number between 0 and 1; the number determines the next state of that bud. For added
realism we can make the probabilities functions of time, so that at later stages the probability of a bud
dying is higher. Figure 8 shows three imaginary "trees" using a branching number of 2, that is, when a
node branches it produces two new branches. The exact same program drew the three trees; using
probabilities and random numbers we can make it look as if the three trees come from the same family,
but are not identical.

Another of my favorite ways to model botanical growth is a method called L-systems, or string
rewriting. It was discovered by Aristid Lindenmayer, a Dutch biologist who had the remarkable idea of
using concepts from formal language theory to describe plant growth, and developed by Premislaw
Prusinciewicz [9]. In this model each geometric part of the plant is assigned a character. Here is a simple
example: let I represent an internode, L a leaf and F a flower. We use brackets and parentheses to
indicate branches. Square brackets enclose a branch to the left, parentheses enclose a branch to the right.
For example, the string of characters I[ILIF]I(II(L)IF)IF might represent the imaginary plant in
Figure 9a. At each stage we use a set of rewriting rules (productions) to successively replace each
character by a string of characters. Figure 9 illustrates several stages in the development of an imaginary
plant using this method.

 a b c d
Figure 9: Stages in an imaginary plant resulting from string rewriting

Another method of modeling plant growth and other branching phenomena uses a stochastic matrix
of probabilities; this method is reminiscent of a Markov chain. Space considerations preclude a
description here, but the interested reader can find more in [5].

2.2. Mountains and clouds. The midpoint displacement rule illustrated in Figures 3 and 4 can be
extended to a two dimensional model in which we obtain a height field over a two-dimensional grid. We
can use this to model both mountains and clouds. To model clouds, we assign a ramp of colors to the
heights, while to model mountains we use some trigonometry and calculus to project the three
dimensional height field onto a two dimensional surface.

First we outline the recursive midpoint algorithm for generating the height field. We start with a 2n+1
by 2n+1 grid of points in the plane, where n could be 9, for example, for a 513 by 513 grid. We assign a
number to each of the 4 corner points. At step 1 we assign a value to the point labeled 1 in Figure 10a;
the value is the average of the numbers at the 4 corner points plus a random number. At step 2 we assign
values to the points labeled 2 in Figure10b, by taking the average of the three closest previously assigned
points plus a random amount. Figures 10c and 10d show the order in which the next several points are
assigned. At each stage the random amount is scaled down.

Once the height field is generated we can render it as three dimensional mountains using some
calculus and trigonometry, illustrated in Figure 11a, or we can assign a continuous ramp of colors to the
heights and render it as clouds, illustrated in Figure 11b. By changing the scale factor that we use in

scaling down the random amount that we add at each stage, we can produce sharp fractal-like mountains
and clouds or soft rounded mountains and cumulus clouds.

 Figure 10a Figure 10b Figure 10c Figure 10d

Can you guess which pixels will be assigned at Stage 5?

 Figure 11a: 3-d rendering Figure 11b: 2-d rendering

3. Mathscapes

Figure 12: “Mathscape”

Soft, rounded mountains, like those found in Vermont, can also be produced by using sums of
trigonometric functions with randomly assigned coefficients, which can then be projected onto a two-
dimensional picture using the same rendering technique that we used for the fractal mountains generated
by the midpoint algorithm.

In Figure 12, “Mathscape”, I have combined the recursive algorithms for clouds, mountains and
various imaginary plant forms into one picture.

4. “Persian” Rugs

The midpoint algorithm that produced the clouds and mountains can also be used to generate abstract
designs that resemble Persian rugs. Instead of adding a random amount at each stage, we add an integer
amount based on some function of the previously assigned values. Then to each integer we assign a
color. For example, in the first stage of the recursion we assigned a value to the middle point based on
the values assigned to the corner points. To design a “Persian” rug, since we want symmetry, we would
initially assign the same integer value to the four corner points. To get the value for the center point we
let x1 be the value assigned to the upper left corner, x2 the value assigned to the upper right corner, x3 the
value assigned to the lower left corner and x4 the value assigned to the lower right corner. An example of
a function that assigned the value to the midpoint might be f(x1, x2, x3, x4) = (x1 + x2 + x3 + x4)/ 3 mod 17.
Actually I discovered a simpler algorithm [4] which goes something like this: assign integers to a set of
k+1 colors. Color all points on the borders of the grid color j, j € {0,..,k}. As in the first method, make up
a function f of 4 integers that returns an integer. Apply f to the 4 corner points resulting in an integer m
between 0 and k. Color all points on the two lines connecting the midpoints of the opposite borders
the

Figure 13: “Persian” recursion

new color m, then recursively repeat the process for the four new squares until all pixels have been
colored in. Some examples can be seen in Figure 13.

5. Using recursion to produce abstract designs

Looking at the replacement rule illustrated in Figure 2 we see that it seems to say: start with a circle,
replace the circle with four smaller circles tangent to each other and tangent to the original circle. Then at
the next stage repeat the operation with each of the new circles. We can generalize this procedure using
what mathematicians call an Iterated Function System (IFS). This is a collection of n ≥ 2 contraction
mappings of a set into itself. For example, suppose we have a collection of transformations {Tj}, each
one mapping a circle to a smaller circle contained in the original circle. A recursive algorithm for
drawing a design such as the one in Figure 2 might look like this:

Function Recurse(step, center, radius){
If (step == 0){

Draw the circle with center center and radius radius;
}
else{

for (j = 1; j <= number of transformations; j++){
find newcenter, newradius, the center and radius of Tj(C) ;
Recurse(step-1, newcenter, newradius);

}
}

}

The limit set of an IFS is the set of points that is invariant under all compositions of the contraction
mappings. In general it is a fractal. For a complete theory see [1]. To produce interesting designs, we can
just carry out the recursion for a few steps. For iterated function systems involving circles it is
convenient to use Möbius transformations which map circles to circles.

Figure 14: Iterated Möbius transformations

If we carry out the recursion suggested by Figure 2, we find that the design is not
particularly interesting. The transformations that take the original circle into the four smaller
circles are affine

Figure 15: Showing only selected stages of the recursion and using color in imaginative ways

transformations; they shrink and then translate the original circle, but do not distort it. We can generate
more varied pictures if we alter the original transformations by composing them with Möbius
transformations from the unit circle group. Transformations from the unit circle group map the unit circle
to itself, expanding it or contracting distances along the circle depending on two complex parameters. As
we iterate the distortions propagate, producing more varied and interesting designs. In Figure 14 we see
the effect of changing the parameters. We have also added to the replacement rules a central circle that is
tangent to the other four and in the rightmost picture we have increased the number of circles tangent to
the original circle to six. Figure 15 shows two renderings where we increase the number of circles to
thirteen, show only selected stages of the recursion and use color in imaginative ways. .

6. Conclusion

Recursion is a great way to get students interested in
mathematics and computer graphics. Students are always
amazed at how what looks like a really complicated figure
can be produced in a few lines of code. All the figures in
this paper except string-rewriting were produced using
simple recursion, that is, a single recursive function that
calls itself two or more times. Nearly all programming
languages support recursive functions. For future
investigations we might explore using a recursive chain.
A recursive chain is a set of two or more functions that
call each other.

 Figure 16: Overlapping circles

References

[1] M. Barnsley, Fractals Everywhere, Academic Press, Inc., San Diego, 1988
[2] A. Burns, “Evolution of Math into Art via Möbius transformations”, Math+Art = X Proceedings.
Boulder, CO, June 2005 (forthcoming)
[3] A. Burns, “Recursion: Real and Imaginary Inflorescences”, The UMAP Journal, Vol. 21, No. 4,
Winter 2000
[4] A. Burns, “ ‘Persian’ Recursion”, Mathematics Magazine, Vol. 70, No. 3, June 1997
[5] A. Burns, “Modeling Trees with Stochastic Matrices”, The College Mathematics Journal, Vol. 29,
No. 3, May 1998
[6] P. deReffye, C. Edelin, J. Francon, M. Jaeger, C. Puech, “Plant Models Faithful to Botanical
Structure and Development”, Computer Graphics, Vol. 22, No. 4, August 1988
[7] D. Mumford, C. Series and D. Wright, Indra’s Pearls: the Vision of Felix Klein, Cambridge
University Press, 2002
[8] C.L. Porter, Taxonomy of Flowering Plants, W.H. Freeman, San Fransisco, 1967
[9] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants, Springer-Verlag, New
York, 1990

