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Abstract

This paper is our follow-up on the article Fostering Understanding of Mathematical Visualization [1].  It is
focusing on mathematical visualization of two-dimensional geometric objects within the dynamic geometry
environment.  Furthermore,  it  attempts  to  bridge  the  gap  (if  one  exists)  between  the  geometry  and  art,
suggesting dynamic geometry/art activities as central for students’ understanding of geometric transformations.

1. Introduction

Arcavi suggests that “visualization is the ability, the process and the product of creation, interpretation,
use of and reflection upon pictures, images, diagrams, in our minds, on paper or with technological tools,
with the purpose of depicting and communicating information, thinking about and developing previously
unknown ideas  and advancing understanding” [3,  p.  56].  How is  Arcavi’s  definition  of  visualization
related  to artistic  expression?  Visualizing  encompasses both the process  and the product  of creating,
producing and constructing pictures, applets, images, icons, even symbols, in order to represent what we
perceive to be relevant for an understanding and representing that understanding. Both mathematics and
art have their own language, form, structure and mode of expression; mathematics, as well as art, requires
creative problem-solving skills, facilitation of both informal and formal skills in order to develop and
support  creativity  and  intuition.  Developing  expertise  in  selecting  appropriate  tools,  media  and
approaches are common, in their own contexts, to both mathematics and art apprenticeship [16].

Cox  and  Brna  [5]  have  shown  that  when  people  are  learning  complex  new  ideas  it  helps  to
interrelate/manipulate various visual representations like diagrams, graphs and animations. If the learner
can integrate information from representations with different formats then they often acquire a deeper
understanding of the concept. On the other hand, if the learner fails to make the connection between the
different kinds of information, then many of the benefits that multiple representations provide may not
occur  (e.g.  [18]).  Furthermore,  multiple  representations for  certain  concepts  have  been  linked  with
greater flexibility in student thinking (Ohlsson [11] as cited in [9]) and visualizations have a particular
place in acquiring adequate representations.

This paper provides a couple of randomly selected practical illustrations for fostering understanding of
geometric  visualization,  as  a  means  for  both  understanding  certain  mathematical  processes  and
developing one’s artistic expression. A full range of activities and illustrations will be prepared for the
conference and available on a digital medium.



2. The van Hiele Levels of Geometric Thought

While Piaget and Inhelder [12] suggest that the development of perception as described by the types of
geometry are sequential (i.e. Topological, Projective, Euclidean), other researchers believe that all types
of geometric thinking continue to develop over time and become increasingly integrated. The stages of
development suggested by Piaget & Inhelder are similar in that they demonstrate the child's naturally
increasing ability to perceive and represent the geometric complexity of our three-dimensional world.
Both sets of stages emphasize the importance of comprehending spatial relationships between objects and
finding ways to show these relationships through 'perspective' drawing techniques. 

Originally  there  were  five  van  Hiele  levels,  which  have  been  adapted  and  renamed  by  various
researchers, but now van Hiele concentrates on the three levels that cover the regular schooling time. The
visualization begins  with  'nonverbal  thinking'.  Shapes  are  judged  by their  appearance  and  generally
viewed as 'a whole', rather than by distinguishing parts. At the analysis level, students can identify and
describe  the  component  parts  and  properties  of  shapes.  For  example,  an  equilateral  triangle  can  be
distinguished from other triangles because of its three equal sides, equal angles and symmetries. Students
need to develop appropriate language to go with the new specific concepts. However, at this stage the
properties  are  not  'logically  ordered',  which  means  that  the  students  do  not  perceive  the  essential
relationships between the properties. At the informal deduction level  properties of shapes are logically
ordered. Students are able to see that one property precedes or follows from another, and can therefore
deduce  one  property  from another.  They  are  able  to  apply  what  they  already  know to  explain  the
relationships  between  shapes,  and to formulate  definitions.  For  example,  they could  explain  why all
squares are rectangles. Although informal deduction such as this forms the basis of formal deduction, the
role of axioms, definitions, theorems and their converses, is not understood. Students can see (establish)
interrelationships between figures and derive relationships among figures. Simple proofs can be followed
but not understood completely. Students at the deduction level understand the significance of deduction
and the role of postulates,  theorems, and proofs.  They can write proofs with understanding. Students
understand  how  to  work  in  an  axiomatic  system.  They  are  able  to  make  abstract  deductions.
Non-Euclidean geometry can be understood at this highest, rigor level ([17], [18]).

These  stages  of  learning are  significant  in  providing  a framework  for  instruction  aimed to  develop
understanding of the material or skills to be learned [4]. The main idea is  that  a learner  cannot
achieve one level of reasoning without having passed through the previous levels. What “having passed
through” means in this case is achieving deeper understanding of concepts and relationships attached to
that level of reasoning. 

You can say somebody has attained higher level of thinking when a new order of thinking enables
him, with regard to certain operations, to apply these operations on new objects. The attainment of
the new level cannot be effected by teaching, but still, by a suitable choice of exercises the teacher
can create a situation for the pupil favorable to the attainment of the higher level of thinking [37, p.
39]. 

3. Visualizing with Dynamic Geometry.
 

Students’ exploration with a variety of representations when building their conceptual understanding of
mathematical ideas is very important and has been studied by many authors ([8], [6]). Demana and Waits
emphasize “the ability of students to operate within and between different representations of the same
concept or problem setting is fundamental in effectively applying technology to enhance mathematics
learning” [6, p. 218]. Schultz & Waters [14] suggest careful consideration for selecting representations
that will facilitate students learning.  Visual representations in technology-augmented activities support



mathematical  connections  in  at  least  three  ways:  (a)  linking  multiple  representations  of  the  same
mathematical  idea,  enhancing the  context  for  reflective  abstraction,  (b)  interconnecting mathematical
topics and (c) connecting mathematics to real-world phenomena. Appropriate use of technology supports
learners,  both  teachers  and  students,  in  bringing  together  multiple  representations  via  intermediate
representations and explicating connections among different representations of mathematical phenomena.
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Figure 1: Rolling rectangle tracer

A visual solution to a problem can engage students with “meanings which can be easily bypassed by the
symbolic solution of the problem” and can bring geometry-based representations to the aid of what seem
to be purely symbolic processes [3, p. 62]. For example, one can symbolically study systems of equations
with two variables without making a connection with geometry-based representation of the situation;
relationships of two lines in a plane ([1]). 
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Figure 2: A caption of an animated visualization of the sine function  

Dragging/animating  a  geometric  figure  across  a  computer  screen  illustrates  dynamic  behavior  of
geometry  programs  such  as  Geometer’s  Sketchpad,  Cabri  and  Cinderella.  That  capability  has
significantly changed the quality and impact of geometry experiences. Furthermore, it has provided broad
opportunities for learners to experiment with, explore and visualize objects in qualitatively new ways.
One construction in one of these media, unlike on a piece of paper or a chalkboard, provides a source of
experimentation with a range of examples, making available a collection of representations for further
study.  This  learning  to  visualize  differently  requires  learners  to  think  differently.  Change  in  the
instructional  strategies  is  an  imperative,  especially  if  teachers’  education  was  traditional  and
opportunities have not been provided to bring teachers to the “speed” in a dynamic geometry classroom. 

Unlike the static images constructed by hand using straightedge and compass, dynamic geometry figures
can be manipulated, having the variant properties changed by dragging. One can consequently observe



invariants,  producing  large  amounts  of  data  to  analyze  [13].  Dynamic  geometry  tools  are  engaging
students  in  active  learning  in  geometry.  Solving  problems,  posing  questions,  creating  conjectures,
searching for connections, considering counter-examples or formal deductive proofs are enriched with
our  ability  to  visualize  and  reason  using  diagrams.  In  each  of  these  formats,  dynamic  geometry  is
instigating  a  significant  change.  We  are  able  to  make  more  visible  our  internal  representations  of
geometric figures and geometric transformations, and to refine them further when necessary.

A kaleidoscope can be visualized as two mirrors at an angle of π/3 or π/4 to each other. When an object is
placed between the mirrors, it is reflected 6 or 8 times (depending on the angle). A dynamic geometric
representation of this in Geometer’s Sketchpad can produce interesting designs along with a better
understanding of how the kaleidoscope’s fascinating pictures come about.

  

Figure 3: Geometric transformations: Tiling and kaleidoscope(s)

Pedagogical Implications

Technological tools available for visualization broaden both curricular and pedagogical opportunities.
Geometry explored through geometric art is both motivating and real-life connected. Dynamic geometry
provides for students’ development of both internal and external representations in both geometry and
artistic expression. It has already been noted that as technology develops, its uses in the classroom
provide both opportunities and major challenges.  There are many new pitfalls and
misconceptions, along with new ways of motivating students and providing a broader range of
experiences in a shorter timeframe ([10], [13], [1]).  Not only do teachers need to be continually
aware of what their students are really seeing in the dynamic geometry representation, which may
be quite different from what the teacher expected, but also the pedagogical instructions and
questions themselves need to change [3].  For example, after constructing the three medians of a
triangle, a paper-and-pencil student might be asked to describe what he/she observed and to
repeat the exercise with a different triangle, while a dynamic-geometry student could be asked to
manipulate the original triangle to see what will happen to his/her construction as the shape of
the triangle changes.  And the construction may or may not “hold together” to verify the teacher’s
expected result, depending on the steps the student took in the construction.  Also, new
possibilities arise for investigation, such as the “split points” command, with which a more
advanced student might experiment, to explore how many different ways a single point in the
construction has been used.  
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