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Abstract:  Many years ago, Sommerville classified the tilings of the sphere with congruent spherical triangles – under 
some assumptions.   Later, Davies did the same, under only the restriction that the triangles should meet edge-to-edge.  
This paper surveys a recently-discovered class of tilings with congruent spherical  triangle tiles that do not meet edge-
to-edge. 
 
Introduction. Any simple polyhedron can be “inflated” into a tiling of the sphere with spherical 
polygons. Perhaps the most familiar example of this is the soccer ball obtained by inflating the 
truncated icosahedron.  If the polyhedron is inscribed in the sphere, then congruent faces give rise 
to congruent tiles on the sphere.  Otherwise, distortion may occur. The triaugmented triangular 
prism (Johnson solid J51) is an example; inflating it to a sphere must expand some triangular 
faces more than others. 

Not every tiling of the sphere arises from a polyhedron; it is possible that the vertices of a 
spherical tile may not be coplanar. However, in the special case of triangular tiles, meeting edge 
to edge, there is a bijection between monohedral tilings of the sphere and inscribed polyhedra 
with congruent triangular faces.   This is one of the various reasons why it was reasonable for 
Sommerville [5] (in 1923) and Davies [1]  (in 1967) to restrict their attention to tiles that met 
edge-to-edge.  Ueno and Agaoka [6], expanding on Davies’ work, did the same. Even under this 
assumption there are some unexpected and beautiful tilings.  

See, for instance, Figure 1.  The tiling on the left can be seen as related to the union of an 
n-gonal antiprism and two pyramids; that on the right is obtained by breaking the other along a 
skew hexagon, twisting through 120°, and reassembling.  They are thus members of an infinite 
family of tilings.  In the case n=5, both reduce to the regular icosahedron. Otherwise, of course, 
they differ significantly.   

Note that neither of these tilings is isohedral;  in one case the tiles form two orbits under 
the symmetry group, in the other there are many orbits.  For more information on isohedral 
tilings, see [7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Two edge-to-edge tilings  with the same tile 



 
 
This correspondence breaks down if the tiles do not meet edge-to-edge – or at any rate, it gets 
more complicated.  An arc, that is the union of edges in one way on one side and in another way 
on the other, acts like a degenerate tile with area 0 and angles of 0° and 180°.   In the 
corresponding polyhedron, this becomes a face in the form of a crossed polygon, lying in a plane 
through the center of the sphere. Such a polyhedron certainly won’t have a single face type. 
   

Figure 2: Spherical and polyhedral versions of a non-edge-to-edge tiling 

 
 A little theory.   In this section I will give a very brief summary of some of the 
theoretical ideas that we use in classifying triangles that tile the sphere but not in an edge-to-edge 
fashion. 
 
(1) Spherical excess.  In the Euclidean plane, the angles of a triangle add to 180°.  On the surface 
of a sphere, they add to more than 180° and the amount by which the sum exceeds 180° is the 
area of the triangle (taking 720° to be the area of the  whole sphere.)  Thus, for instance, if a 
triangle has angles 90°, 60°, and 45°, its area as a proportion of the whole sphere is  
(90°+60°+45°-180°)/720° or 1/48.  It follows that a triangle whose excess does not divide 720° 
cannot tile the sphere! 
 
(2) Vertex vectors.  For polygons to tile a sphere, or plane, or any other surface without 
boundary, they must have at least one way to use each type of angle that they have. This means 
that each angle must be part of some collection that fit around a point (add to 360°).  For instance, 
the (102°, 60°,20°) triangle cannot tile the sphere, as there is no way to use a 102° angle. 
Combinations of angles that do fit at a point correspond to solutions in natural numbers  (a,b,c) to 
the equation aα+bβ+cγ = 180°.   For any triangle, all these “vertex vectors” lie in a plane in the 
(a,b,c)-space , and the integer solutions can be determined by various methods.  
 
(3) Split vectors.  If a triangle is known to tile the plane but not in an edge-to-edge fashion, then 
there must be at least one vertex that lies on an edge, at which the angles add to 180°.  We call 



such a vertex a split vertex.  If such a vertex has a 
right angles, b β angles, and c γ angles, then 
(2a,2b,2c) is a vertex vector. We call a vertex 
vector with all components even a split vector.   

Except for a few exceptional cases,  we 
can show that more than one angle must be 
involved in split vectors.  One exceptional case is 
the  (90°,108°,54°) triangle (figure 3), which does 
not tile the sphere edge-to-edge but does tile (in 
three ways) using no split vertex except for  two 
right angles meeting at an edge [4]. It is also 
notable for the asymmetry of its tilings; two have 
symmetry groups of order 2, the third is 
asymmetric. 
 
(4) The irrationality hypothesis.  A little 
exposure to high school trigonometry should be 
sufficient to make it plausible that the numbers get 
messy quickly.  To be more precise, angles with 
rational degree measures usually don’t have 
rational trigonometric ratios.  On the sphere, this 
leads to the following deliberately vague 
hypothesis: 

         Figure 3:  A tiling with the 
           (90°,108°,54°)  triangle 

 
 “With a few important exceptions, spherical triangles with rational angles don’t have 
rational relations between their edge lengths.” 
 

This is left vague because there doesn’t seem to be a hope of proving it without a major 
advance in transcendence theory.  In the same way, we cannot prove that ππ is irrational (though 
most mathematicians would offer excellent odds that it is!)  However, as our purpose is to show 
that certain sums of edge lengths cannot be obtained in more than one way, we just need to know 
that the edges (A,B,C) of certain specific spherical triangles do not satisfy pA + qB + rC = 0  
where p,q,r are integers with absolute value less than, say, 3; and this can be checked very easily 
(for instance, using a calculator). 
 
 For any tiling with N congruent triangles for which this holds, a maximal arc contained in 
the union of the edges that has p hypotenuses, q long legs, and r short legs on one side of it must 
have the same number and types of edges on the other side. Summing this over all arcs, we see 
that the total number 3N of triangle edges, and thus N,  must be even.  Moreover, if the tiles along 
such an arc don’t meet edge-to-edge, the most common alternative arrangements have a rotational 
symmetry (whereas edge-to-edge arrangements often have reflectional symmetry).   This explains 
why (as may be observed) chiral symmetries are the rule among non-edge-to-edge tilings and the 
exception among edge-to-edge tilings. 
 
 

Figure 4: Configuration along a great circle arc 

 
 
 



 
(5) Vertex equity.   In any tiling by isosceles triangles, there are exactly twice as many base 
angles as apices; and in any tiling by scalene triangles, there are exactly equal numbers of each 
kind of angle.  However, for some triangles, the possible vertex vectors do not reflect this 
balance.  In particular, there are some triangles for which a certain angle appears more than 
another in every possible vertex configuration.  Such a triangle clearly cannot tile! 
 We can also make more subtle uses of this principle. If there is only one configuration in 
which a certain angle appears in at least the target proportion, then that configuration must appear 
in any tiling.  Moreover, if it can be shown – as is often the case – that such a configuration is 
always accompanied by nearby split vertices with a strong surplus of a different angle,  it may 
still be impossible to create a tiling with vertices in the ratios in which the triangle provides them. 
In practice, if you try to create such a tiling, you end up with more and more of the hard-to-use 
species of angle on the boundary, until eventually you get stuck. 
 
 
Known tiles.  In the remainder of this paper we exhibit various tilings.  We believe that these 
complete the list of isosceles and right-angled triangles that tile the sphere, though the proof of 
this is rather lengthy.  (Some tiles are known to tile in huge numbers of ways; an actual 
enumeration of tilings, as oposed to tiles, is not expected soon.) Preliminary work suggests that 
the oblique triangles in the final section complete the list of all triangles that tile the sphere , but 
at this point this has not been definitely verified. 
 
(1) New tilings with old tiles.   Most of the tiles that tile the sphere in an edge-to-edge fashion 
also tile in other ways.   The most common (and least interesting) variation is obtained from an 
edge-to-edge tiling by way of a  “Rubik’s Cube” twist along a great circle. (Fig. 5, left)  This is a 
special continuous case of a usually-discrete process for changing tilings, which often yields non-
edge-to-edge results.  In general, if the union of some subset of the tiles has a symmetry group G 
larger than the symmetry group H of the subset, then any element of the quotient group G/H  acts 
nontrivially on the tiling. An example is provided by any of the sets of four tiles filling an octant 
on the right of Fig. 5. 

     Figure 5:  Two tilings obtained by group actions 



If a tile will tile a lune with polar angle φ, and also some convex 
polygon P with angles (α1, α2, ..., αn)  such that φ divides (180°-
αi) for each i,   then there exists a swirl tiling in which P and its 
mirror image occupy the “polar regions”, while the space in 
between is filled with a swirl of  lunes.  Many variations on this 
these are possible!  In Figure 6,  the lunes, tiled with four tiles  
each, have polar angle 36°; two of the tiles make up one triangle 
of a spherical icosahedron; and  the polar polygon is a pentagon 
with angles of 144° 

Figure 6: A swirl tiling with 
quarterlunes 

 
(2) Isosceles triangles. In a 2001 paper [3], I classified all the 
isosceles triangles that tile the sphere.  These consist of the 
known edge-to-edge isosceles tiles found by Sommerville and 
Davies; three special cases; and an infinite family of semilunes,  
obtained by dividing  the region between two great circles  into 
two isosceles triangles as in Figure 7.  This can be done 
whenever the polar angle φ is less than 120°; when φ also divides 
360° the triangle tiles. If 360°/φ is odd, however,  the triangle  
does not tile edge-to-edge.  A tiling of this type is shown in 
Figure  2. 

The three special cases are shown in Figure 8. They are 
the   (80°, 60°, 60°), (100°, 60°, 60°), and (150°, 60°, 60°) 
triangles,  which tile with 36,  18, and 8 copies respectively. The 
first of these tiles in exactly three distinct ways [2], the second 
and third uniquely.  Note that the (100°, 60°, 60°) tiling is two-
colorable. 

Figure 7: Two isosceles semilunes  

Figure 8: Tilings with the  (80°, 60°, 60°), (100°, 60°, 60°), and (150°, 60°, 60°) triangles  



(2)  Right triangles.  Over the course 
of two summers, I worked with an 
undergraduate student, Blair Doyle,  
on a complete classification of the 
right triangles that tile the sphere.  We 
believe the classification to be 
complete but are still checking our 
work on a couple cases.  

Figure 9: A design for a puzzle based on the  
(90°,60°,40°) triangle, which tiles in several ways

 
 Every isosceles triangle that 
tiles the sphere, of course, gives rise 
by bisection to a right triangle tile.  
The  (90°, 60°, 40°) tile obtained by 
bisecting the (80°, 60°, 60°) triangle  
tiles the sphere in many ways, none of 
them edge-to-edge, and might make a 
nice spherical puzzle! 
 
There are also a number of other right triangles that tile the sphere. These include the   
(90°, 60°, 54°) triangle, three of which make up one of the  (90°, 108°, 54°) tiles mentioned 
above.  (The smaller tile was discovered first; my wife, Bridget Thomas, was looking at my 
sketch and noticed that they fitted together into larger tiles.)  It also tiles in several other ways. 

Another right-angled tile is the  (90°, 72°, 30°) triangle, 60 copies of which tile the 
sphere. While both (72°, 72°, 60°) and (144°, 30°, 30°) triangles appear in this tiling, neither of 
them tiles the sphere on its own.  The (90°, 105°, 45°) triangle (on the right of Figure 10), like the 
tile in Figure 3,  is  “right-obtuse”.  The twelve tiles have a delightfully twisty configuration.     

 

Figure 10: Tilings with the (90°,60°,54°), (90°,72°,30°), and   (90°,105°,45°) triangles 



 
The  (90°, 75°, 45°) triangle tiles a 120° lune, three of which tile the sphere (Fig. 11, left).    
Moreover,  by picking the orientations of these lunes properly, two of the three joins may be 
made edge-to-edge.  The only non-edge-to-edge boundaries in this tiling are along the single 
meridian seen through the transparent front section of this sphere.  While in one sense this tile 
comes extremely close to tiling the entire sphere edge-to-edge, it was easily ruled out by Davies 
because the (0,3,3) vertex, needed at the poles, could not be realized. 

The  final right-angled triangle  tile, with angles of (90°, 78.75°, 33.75°), was discovered 
by Mr Doyle, in the last week of our search.  It has only one tiling, a structure of great 
complexity (Fig. 11, right).  In particular, the tiling is notable for having a very small symmetry 
group (order 4) for a tiling with so many (32) tiles.  It has 8 different orbits under its symmetry 
group, a record for the “least symmetric most symmetric”  tiling. 

Figure 11: Tilings with the (90°, 75°, 45°) and (90°, 78.75°, 33.75°) triangles 

(3). Other triangles.    There are several other triangles that tile the sphere.  The two in Figure 12 
are members of infinite families.  Both have polar stars joined by a helical equatorial belt of 
quadrilaterals, but the quadrilaterals divide into triangles differently.  The diagonals dividing the 
quadrilaterals on the left run between obtuse vertices; on the right, they join acute vertices. 

   Figure 12: Representative tilings from two infinite families 



The tiling in Figure 13 uses 48 (120°, 45°, 30°).  
triangles. It has polar stars like the tilings in Figure 
12, but it has a double belt of quadrilaterals 
around its equator. The complex but 
symmetric pattern is remniscent of  a 
Fabergé  egg.  There are not any other 
closely related tilings with more or 
less than 12 triangles meeting at the 
poles.  To see this, note that with 
four different vertex figures, the set 
of linear equations determining the 
angles is overdetermined. Thus, in 
particular, the (3, 0, 0) vertex and 
the (1, 0, 2) and (0, 4, 0) splits force 
the (0, 0, 12) polar configuration.  

This tiling is also unusual in 
that all of its triangles are paired into 
kites.  Thus, we also have a non-edge-to-
edge tiling of the sphere with 24 congruent 
(90°, 120°, 60°, 120°) kites. 
 
 

Figure 13: The tiling with the (120°,45°,30°) triangle  
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