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A reader  whose  standpoint  is  more  severely  practical  may take  comfort  in  Lobatschewsky's
assertion that 'there is no branch of mathematics, however abstract, which may not some day be
applied to phenomena of the real world.’  [Regular Polytopes, p. vi]

                                         

"Applied mathematics" is not a phrase "Coxeter"  evokes in anyone's mind, and probably never
in his own.  But H.S.M. Coxeter  appreciated -- indeed, delighted in -- the symbiotic relation
between  polytopes  and  crystals.  His  classic  Regular  Polytopes  is  indispensable  for  the
mathematical study of crystals, never more than now.1

Coxeter also appreciated and delighted in the symbiotic relation between models – the kind you
can pick up, turn over, study from different perspectives – and their abstract descriptions. (Or do
the  models  describe  the  abstractions?)  Eggs  and  chickens  aside,  crystallography  is  a
mathematical gold mine in any dimension, and Coxeter delighted in this too. 

Regular polytopes and tessellations in four, five, n dimensions: we can never fully comprehend
them by direct observation, Coxeter wrote. In attempting to do so, however, we seem to peep
through a chink in the wall of our physical limitations, into a new world of dazzling beauty.  A
beauty so dazzling we must study its shadows, and he taught us how.

I hope, in these eight pages, to justify these statements. That's why I've written this paper in the
form of a picture booklet. Look before you read. The pictures come first. All the rest – quotations
from Regular Polytopes and Coxeter's world-wide correspondence, my supplementary remarks –
is commentary.

1 H.S.M. Coxeter, Regular Polytopes, Dover Publications, 3rd edition, 1973. 

Donald Coxeter, 1993,
photograph by Stan Sherer



Crystals and Polyhedra

The  foundations  for  our  subject  were  laid  by  the  Greeks  .  .  .  but  all  the  more  elaborate
developments are less than a century old. This revival of interest was partly due to the discovery
that many polyhedra occur in nature as crystals. [Regular Polytopes, p. vi]

from Goldschmidt's 
Atlas der Krystallformen



Many polyhedra do occur  in nature  as crystals,  and many crystals  have polyhedral  forms. A
century ago, mineralogists pored over drawings like those you see here, 14 of the 23,606 crystal
forms in  Viktor Goldschmidt’s nine-volume Atlas der Krystallformen.2  

Why all this painstaking labor, this manic detail? Not for art's sake, nor for geometry’s sake, but
for  science's.  Long  before  recorded  history,  people  marveled  at  crystals  and  their  striking
geometric shapes and wondered how and why. Even fragments of shattered crystals  have smooth
flat  faces,  unlike  glass.  Early  in  the  19th  century,  René Just  Haüy,  a  French  mineralogist,
proposed a how and why: crystals are stacks of sub-visible bricks.3  The crystallographer’s job,
then, was to deduce, for each polyhedral crystal, the shape of its brick – its height, width, depth,
and interfacial angles. Hence the study of form. 

Goldschmidt's labor of love was obsolete before the first  volume appeared. The discovery, in
1912,  that  X-rays  are  diffracted  by  crystals  unlocked  the  mysteries  of  the  solid  state.4 The
positions of atoms in any crystal, polyhedral or otherwise, could be deduced from the scattered
rays. Haüy's hypothesis became history, but diffraction's overnight success rested squarely on his
notion  that  a  crystal’s  building  blocks  –  atoms,  molecules,  whatever  –  line  up  in  rows  and
columns.  Tilings, polyhedra and symmetry groups remained in the crystallographer's toolbox.

 

2 V. Goldschmidt, Atlas der Krystallformen, Munich,  9  volumes, 1913 - 1923.
3 R. J. Haüy, Traite de Mineralogie, Paris, 1822.  
4 Max von Laue received the Nobel Prize in Physics for this discovery in 1914.



The Crystallographic Restriction
There is a law of symmetry which prohibits the inanimate occurrence of any pentagonal figure,
such  as  the  regular  dodecahedron.  The  two  more  complicated  regular  solids  cannot  form
crystals, but need the spark of life for their natural occurrence. [Regular Polytopes, p. 13]
 

                               

In this drawing, from Traité de Mineralogie, Haüy shows how two different polyhedral crystal
forms can be approximated by stacking bricks of the same size and shape. Both forms display the
symmetries of the stacking pattern. The difference in the exterior forms is literally superficial.

Look closely at the polyhedron in the middle on the right, a common form of the mineral pyrite.
Although  the  "pyritohedron"  has  twelve  pentagonal  faces,  it's   not  a  regular pentagonal
dodecahedron (see Regular Polytopes): one edge in each of its pentagons is longer than the other
four. According to Haüy, crystal faces  can't be regular pentagons. Haüy's brick theory implies
that the vertices of every crystal are rational triples in the coordinate system defined by its brick.
A pyritohedral stack is shown in lower center.

Mineralogists  call  this  the  "Law of  Rational  Indices."  Regular  pentagons,  and  hence  regular
pentagonal dodecahedra, don't have rational vertices in any coordinate system. Nor do regular n-
gons  for  any  n greater  than  6.  In  symmetry  group  language,  Haüy’s  law  becomes  The
Crystallographic Restriction:5 

If a discrete group of displacements in the plane has more than one centre of rotation, then the
only rotations that can occur are 2-fold, 3-fold, 4-fold, and 6-fold.                           

The regular dodecahedron and icosahedron are outlaws in the crystal kingdom.

5 Regular Polytopes,  p. 63

 from R. J. Haüy's 
Traité de Mineralogie



 Kaleidoscopes and honeycombs 

A three-dimensional  honeycomb (or  solid  tessellation)  is  an  infinite  set  of  polyhedra  fitting
together to fill all space just once, so that every face of each polyhedron belongs to one other
polyhedron. . .Three dimensional honeycombs help us to understand the arrangement of atoms in
a crystal. [Regular Polytopes, p. 74.]   

                       

4

The kaleidoscope,  introduced in 1818, “very quickly became popular  .  .  .  no fewer  than two
hundred thousand instruments were sold in London and Paris in three months.”6 This grieved its
inventor,  the Scottish physicist  David Brewster,  for  most of these "instruments" were patent-
infringements and – just as sadly – “out of this immense number there were perhaps not one
thousand constructed  on scientific principles.” Brewster expected the kaleidoscope would be,
first and foremost, a tool for  industrial design, and only secondarily an "instrument of rational
amusement." But a toy it  remained for 116 years, until Coxeter gave it gravitas.7

While crystallographers argued over Haüy’s bricks (are they solid? or fictional containers for
possibly fictional molecules?), mathematicians analyzed the arrangements, not the arranged.8 In
Regular Polytopes, Coxeter described highly symmetrical tessellations in the plane and in three-
space, and in the beyond. He's best known for his study of groups generated by reflections: the
analysis,  classification,  and  systematization  of  tessellations  generated  by  reflections  in  any
dimension. Brewster himself had constructed a 3-D kaleidoscope (the mirrors above generate a
cubic pattern), but Coxeter generalized the kaleidoscope beyond Brewster's fondest dreams. 

In Coxeter’s famous graphical notation for these groups, the generating mirrors are represented
by dots which are joined by line segments unless the mirrors are perpendicular. Since adjacent
mirrors generate a circular pattern with a whole number of mirror-symmetric images, the angles
must be π/p, where p is an integer greater than one. In Coxeter graphs, a line is labeled by that
integer if  p > 3.   Hence the 4 in the graph above. If we added a fourth mirror to complete the
tetrahedron, the pattern would be crystallographic:  infinite in all directions.

6 Quoted by David Brewster in The Kaleidoscope, its history, theory, and construction, reprinted by Van
Cort Publications, Holyoke, MA, 1987.
7 H.S.M. Coxeter, “Discrete groups generated by reflections,” Annals of Mathematics, 35, 1934, 588-621.
8 As Arthur Schonflies put it, "within the fundamental domain the crystallographer may do as he likes."

left: repeated reflections in a cone
of three mirrors with interior
angles π/4, π/4, and π/2 generate a
three-dimensional pattern with
cubic symmetry; 

below: Coxeter's elegant graphical
notation for the group generated
by these reflections.



Color Symmetry

The problem of systematically coloring periodic patterns has interested textile designers, artists,
and crystallographers since 1935. The classification of possible procedures has been seen to
depend on space groups and their  subgroups and factor groups. Crystallographers naturally
worked in Euclidean 3-space before generalizing to two, and then four, dimensions.9

Crystallographers and mathematicians discovered the mathematical drawings and prints of M. C.
Escher in the 1950s. His tessellations soon appeared in their monographs and texts, giving life to
group theory and  to  the  tedious  study of  crystalline  arrangements.  In  Escher's  kaleidoscopic
tessellation above, which illustrates the plane crystallographic group p31m, the mirrors bisect the
fish to form equilateral triangles enclosing a half-fish of each color. 

Escher designed this pattern before he met Coxeter. Later, Coxeter sent him other mathematical
ideas which Escher converted to art,  a process he called “coxetering.”10 

Look closely:  there’s  more than mirrors  here.  The red fish  (and  the  black and the gray) are
arranged in hexagonal rings. Except for their colors, the three sets of rings are congruent. The
fish of each color correspond to subgroups of the tessellation’s symmetry group, which permutes
them. In other words, this  pattern  has  color symmetry.  Crystallographers use color symmetry
theory  to  describe  the  positions  of  the  different  kinds  of  atoms in  a  single  crystal,  like  the
checkerboard pattern of Na and Cl atoms in salt. 

Coxeter was intrigued by color groups; we corresponded intensively about them for a few years.
He was  particularly  interested  in  the  problem of  notation,  and  developed  symbols  for  color
groups of certain types.

9 H. S. M Coxeter, "A Simple Introduction to Colored Symmetry," International Journal of Quantum
Chemistry, 31, 1987,  455-461.
10 See D. Schattschneider, “Coxeter and the Artists:  two-way inspiration”, The Coxeter Legacy, Fields
Communications v. 46, Amer. Math. Soc., Providence, 2005.

All M. C. Escher
works © 2005. The M.
C. Escher Company –
The Netherlands. All
rights reserved. Used
by permission.
www.mcescher.com



Nonperiodic honeycombs

Dear Dr. Miyazaki, What I would be interested to know is whether rhombohedra fill space in a
manner that  is  essentially  non-periodic  (in the  sense  that  no honeycomb composed  of  these
particular bricks can have a translation into itself). If the answer is yes, we would have here a
very  nice  3-dimensional  analogue  for  the  non-periodic  tilings  of  Roger  Penrose.  [H.S.M.
Coxeter to Kojo Miyazaki, April 22, 1977.]

                    

Like  Haüy’s  arrays,  kaleidoscope  tilings  are  periodic:  they  repeat  by  translations,  or  shifts.
Penrose tilings are nonperiodic: no tiling built with Penrose tiles repeats by translation in any
direction. In the version shown above left, the Penrose tiles are rhombs with acute angles 72º and
36º,  constrained  by  "matching  rules"  for  putting  them  together.  Though  these  rules  forbid
translation,  configurations  do  repeat  –  but  you  can’t  predict  just  where.   All  seven  "legal"
arrangements of Penrose rhombs around a vertex occur again and again in the fragment above . 

Like fractals,  Penrose  tilings repeat  on every scale.  Many of the tilings’  remarkable features
follow  from  this  property,  including  their  nonperiodicity.  Coxeter  was  intrigued  by  the
possibility of a three-dimensional analogue and proposed the two golden rhombohedra, A6 and
O6, as tiles.11 The dihedral angles of A6 are the polygonal angles of the thick Penrose rhomb, and
those of O6 are  those of the thin. He hoped to show, first, that these rhombohedra can build
tilings that repeat on every scale, and second, that matching rules could be found to enforce it.

Earlier,  in  Regular  Polytopes, Coxeter  had  shown  that  10  A6s  and  10  O6s  make  a  Kepler
triacontahedron, K30. Could that construction be repeated on larger scales ad infinitum? 

A friend A.G. Bomford, an Australian engineer, made the wooden models of A6 and O6 shown
above.12 The blocks are handsome and smooth, but difficult to stick together. Thin tape worked
well, up to a point, but even the thinnest tape creates cascading gaps eventually. Coxeter finally
gave up, pleading with Bomford, I don't have the time or patience to try it myself, so please don't
embarrass me by sending the necessary pieces!

11 A polyhedron is golden if its faces are golden rhombs; a rhombus is golden if the lengths of its diagonals
stand in the golden ratio. 
12 Richard Bomford has kindly photographed his father's models for this article.

left: a portion of a Penrose tilings by rhombs; right: models of A6 and O6 made by A. G. Bomford



Icosahedral crystals

Dear Dr. Nelson, Thank you for the reprints from 'Science'  and the 'New York Times'  about
quasi-crystals. They reached me the next day after your lecture in Toronto. They reminded me of
many things I had been thinking about in former times. [H.S.M Coxeter to David Nelson, January 22,
1986.] 

                                                                          

In 1984, solid state scientists – and mathematicians – were stunned by the announcement of the
impossible:  crystals with  bona fide icosahedral symmetry had been grown in a laboratory! Not
only did the forms of these crystal have outlaw symmetry, their diffraction patterns did too. But
then so must their atomic patterns, at least statistically. That's impossible, isn't it?  No, it's not: no
law  of  nature,  nor  of  mechanics,  says  atoms  in  crystals  must  line  up  periodically.  The
Crystallographic Restriction isn't a theorem about crystals and never was. Like Haüy's Law of
Rational Indices, it's a theorem about arrays, the standard mathematical model for crystals. 

How,  then,  to  envision  these  new atomic  patterns?  Suggestions  lay  waiting.  In  1981,  Alan
Mackay, a far-sighted crystallographer, had punched the vertices of a Penrose tiling into a metal
plate and use this to diffract visible light. His optical diffraction patterns strongly resembled the
icosahedral X-ray patterns: perhaps the new crystals were 3-D Penrose tilings!13 That same year,
N.G. de Bruijn showed that Penrose tilings of the plane are projections of sections of the cubic
tessellation  of  5-dimensional  space.14 Indeed –  see  Regular  Polytopes,  p.  244 –  the  2-
dimensional  faces  of  a  5-dimensional  cube  project  to  the  Penrose  rhombs.  De  Bruijn's
reformulation opened the door, or the lid, to non-periodic tilings in any dimension. 

I find it fascinating that all this nice geometry has physical applications despite the disclaimers
in those textbooks which you exhibited, and my own rash assertion (RP, p 13) that 'the 2 more
complicated  regular  solids  need  the  spark  of  life  for  their  natural  occurrence'! Coxeter
concluded his letter to Nelson.

13 A. M. Mackay, De nive quinquangula - On the pentagonal snowflake, Sov. Phys. Crystallogr., 26, 1981,
517-522 
14 N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane, Kon. NederL Akad.
Wetensch. Proc. Ser., A84, 1981, 39-52 and 53-66. 

the 2-dimensional faces of a 5-dimensional
cube project to the Penrose rhombs.



Nonperiodic honeycombs, continuing . . . 

Dear Mr. Ammann, I am much interested in your 1976 discovery of a three dimensional
analogue of Penrose's nonperiodic tilings, namely a packing of acute and obtuse rhombohedra
whose faces are golden rhombs. . . Would it be possible to decorate the rhombohedra with pits
and pimples so as to be the infinite assembly essentially nonperiodic? [H. S. M. Coxeter to Robert
Ammann, February 19, 1986]

The icosahedral crystals rekindled Coxeter’s interest in 3-D Penrose tiles. Robert Ammann, an
amateur geometer, had found matching rules (x's for bumps, o's for dents, the former fitting into
the latter) for the golden rhombohedra.15 As this photograph of five rule-abiding configurations
suggests, Ammann's rules closely mimicked Penrose's.  But do his tilings repeat on all scales?

I agree that twenty such rhombohedra (10 acute and 10 obtuse) can be assembled to form a
triacontahedron, Coxeter continued. I am anxious to know whether a triacontahedron K30 could
possibly  be  surrounded  by  70  A6s  and  70  O6s  in  such  as  way  as  to  preserve  icosahedral
(rotatory) symmetry and make a big K30 (of edge 2). 

Possibilities for Coxetering quasicrystals improved dramatically in 1993, when Michael Longuet-
Higgins  presented  Coxeter  with  prototypes  of  his  “Rhombo”  blocks.  These  plastic  golden
rhombohedra – shown above – have magnetized faces: no sticky tape needed. A decade later,
Longuet-Higgins’s  "big K30 (of edge 2)" graced a cover of  The Mathematical Intelligencer.16

This  construction,  repeated  ad  infinitum,  generates  a  nonperiodic  tessellation  of  three-
dimensional  space,  but  not  by  Ammann's  rules.  Evidently,  it's  impossible  to  decorate  the
rhombohedra  to  make  Longuet-Higgins's  construction  essentially nonperiodic.  Coxeter's
questions remain open -- as does the relation of any Penrose-type tiling to real crystal strucure.17  

Coxeter's greatest joy, I think, was the search itself.  He delighted in the beauty of the golden
rhombohedra's  fertile,  three-way,  symbiotic  interactions:  a  quasicrystallographic  tool,  a
geometric model,  and perhaps especially  a wedge for widening the chink in the wall  of our
physical limitations.  I find your new paper fascinating, he wrote to Longuet-Higgins, an ideal
rebuttal to the anti-Platonists who claim that mathematics is a human invention like poetry.18

15 M. Senechal, “The Mysterious Mr. Amman,” The Mathematical Intelligencer, v. 26, no. 4, 2004, 10-21.
16 Michael Longuet-Higgins, "Nested Triacontahedral Shells, or how to grow a quasicrystal, The
Mathematical Intelligencer, v. 25, no. 2, 2003, 25-43.
17 M. Senechal, "Donald and the Golden Rhombohedra," The Coxeter Legacy, Fields Communications v.
46, Amer. Math. Soc., Providence, 2005.
18 May 6, 2001, Coxeterhsm@aol.com to mlonguet@uscd.edu.

Five "Rhombo"  block
configurations that obey 
Ammann's matching
rules. Photograph by
Stan Sherer.


