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Abstract 
 

In the paper [1], Joyce Frost and Peg Cagle show how to construct a tessellation with squares of the plane 
from another one of smaller squares, and how this process can be generalized in three dimensions to construct 
a tessellation of the space with rhombic dodecahedra from a tessellation with cubes. The authors then proceed 
and explain how to construct a stellated rhombic dodecahedron (Escher’s solid), and why this solid is space-
filling as well. Interestingly, the procedure of constructing a tessellation from a given one by conveniently 
cutting some of the tiles can be iterated in all these cases, and the tessellations obtained can be associated to 
group action in the plane, or three-dimensional space, respectively.   

 
 

1. Plane Tesselations and Group Actions 
 
Let’s start with an easy tessellation: consider the plane covered by unit squares. If we consider the group 

gfG ,1 = of plane transformations generated by the transformations and ixx +=)(f jxx +=)(g , 
where x denotes a point in the plane, and i, and j are the unit vector on the axes, then all the squares of the 
tessellation are equivalent under the group action of G . 1

Now imagine the squares colored in a checkerboard pattern, mark the centers of the white squares, 
and join them with the sides (figure 1). This procedure will divide each white square into four triangles. 
Add the triangles to the adjacent black squares to which they share a full edge. The plane now becomes 
tiled by squares with vertical and horizontal diagonals of length 2 (figure 2). This tessellation can be 
viewed as the result of the action of the group kh,2 =G  on the plane, where jixx ++=)(h

: 21 GG
 and 

. It is not too hard to show directly that  is a subgroup of G , and that [ =2. 
However, this is even easier if we repeat the procedure of coloring the squares and attaching the resulting 
triangles one more time. By doing this, we obtain a new square tessellation, in which the tiles have the 
edges parallel to the axes again, and the length of the edges is 2. So a group whose action generates this 

jixx −+=)(k 2G 1 ]

Figure 1. Figure 2.



tessellation is mlG ,3 = , with ixx 2)( +=l and jxx 2)( +=m . It is now obvious that 123 GGG ≤≤

2]:[ 32

, and 
since  and all subgroups are proper, then [4]3 =G:][:[ 231 GGG :[] 21= GG ]: 21 == GGGG . Of 
course, this can be continued indefinitely.  

 
 

2. Space-Filling Polyhedra 
 
Now let’s apply the same procedure in three dimensions, starting with a tessellation of the space into 
cubes. Imagine the cubes colored alternating in black and white. Cut the white cubes into six pyramids 
each, by joining the centers to the vertices. Attach the pyramids to the adjacent cubes, thus obtaining a 
tessellation of the space with rhombic dodecahedra. The cubic tessellation is obtained by considering the 
action of the group hgf ,,1 =G , where ixx +=)(f , jxx +=)(g , kxx +=)(h , while the rhombic 
dodecahedron tessellation is generated by i+kxkjx +++ , jix ++=2 ,G .  

What happens if we continue? The next step is to dissect some of the rhombic dodecahedra. Since 
each has 12 faces, this produces 12 pyramids with rhombic bases. Attaching these pyramids to the 
adjacent dodecahedra produces three-dimensional tiles, which are stellated rhombic docecahedra. The 
figures below show the rhombic dodecahedron and the stellated rhombic dodecahedron. The latter is also 
known as Escher’s solid, because it was represented by Escher in his woodcut “Waterfall”. The space 
tessellation with Escher solids, accompanied by a good illustration of how the solids fit together can be 
found in [2]. 

What is interesting is that repeating the dissecting and attaching procedure one more time gets us 
back to a cubic tessellation. This is easier to see with real models and it is due to the fact that each 
stellated rhombic dodecahedron breaks into 48 tetrahedra, out of each groups of 6 get attached together to 
the adjacent solid. Finally, let’s denote by G  the group of space transformations generating the tessella-
tion by Escher solids, and  the group generating the subsequent cubic tessellation. The cubes have 
sides of length 2, and hence 

3

4G
kxjx ix 2,2 ++= , 2+4G . Thus [ 8]:][:][:[]: 43322141 == GGGGGGGG , 

and each group has index 2 in the next one.  
As a final observation, the fact that in this type of construction the index of each subgroup in the next 

group is equal to 2 is in agreement with the fact that the area or volume of the tiles used in the tessellation 
doubles at each iteration.  

 

Figure 3. Figure 4.  
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