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Abstract 

 
A coloring of a semi-regular tiling is perfect if every symmetry of the tiling permutes the colors of the tiling. In this paper, an 
approach to the construction of perfect colorings of semi-regular tilings on the hyperbolic plane is presented.  

 
1. Introduction 

 
In [3], a method for coloring symmetrical patterns was presented where a fundamental domain of the 
pattern is assigned exactly one color. In this paper, we present a general framework for coloring planar 
patterns where a fundamental domain of the pattern may be assigned more than one color. We apply the 
framework to construct perfect colorings of semi-regular tilings on the hyperbolic plane. We will use the 
subgroup structure of the symmetry group of the tiling to systematically construct the colorings. 
 
 An edge-to-edge tiling is a plane tiling where the corners and sides of the polygonal tiles form all 
the vertices and edges of the tiling and vice versa. A vertex of an edge-to-edge tiling is said to be of type 

qppp ⋅⋅⋅ ...21  if the polygons about this vertex in cyclic order are a 1p -gon, a 2p -gon, …, and a qp -
gon. An edge-to-edge tiling having regular polygons as its tiles with vertices all of the same type, and 
where the symmetries of the tiling act transitively on the vertices is called semi-regular. We denote the 
semi-regular tiling as qppp ⋅⋅⋅ ...21  depending on its vertex type qppp ⋅⋅⋅ ...21 . If the polygons in the 

tiling are of the same type, particularly a p-gon meeting q at a vertex, we denote the tiling as qp .  
 
 In this paper, we will present an approach to color perfectly the 588 ⋅⋅  and 8104 ⋅⋅  hyperbolic 
semi-regular tilings. 
 

2. General Framework for Coloring Planar Patterns 
 
The following general framework for coloring planar patterns shall be used to obtain colorings of semi-
regular tilings. 
 
 Let  X  be the set of tiles in the tiling to be assigned colors; 
  G  be the symmetry group of the uncolored tiling; 
  H  be the subgroup of elements of G permuting the colors; 
  C  be the set of colors. 
 



 Let iO  ( )Ii∈  be the H-orbits of colors and ic  a color in iO . Then { }HhhcO ii ∈= :  and 
corresponding to this set is the set { }HhXhJ ii ∈: , where iJ  is the stabilizer in H of the color ic  and 

iX  consists of representatives of each H-orbit of elements of X with the representatives colored ic . 
 
 The following are true: 
 
 1. The action of H on iO  is equivalent on its action on { }IihJ i ∈:  by left multiplication. 
 2. In iO , the number of colors is [ ]iJH : . 
 3. If iXx∈  then ( ) iH JxStab ≤ , where ( ) { }xhxHhxStabH =∈= : . 

 4. If iXx∈  then [ ] ( )[ ]xStabJJHHx Hii :: ⋅=  
 5. The number of H-orbits of colors is less than or equal to the number of H-orbits of elements of 
X. 
 
 The following steps, based on the general framework, shall be used to obtain the required 
coloring of the tiling. 
 
 1. Determine the finite group S of isometries in G that stabilizes a representative tile t from an 
orbit. 
 2. Determine all subgroups J of G such that JS < . 
 3. If tile t has color c, apply c to all tiles in the set Jt. This makes J the stabilizer of the color c 

inside G. If [ ] kJG =: , then Jt is 
k
1

 of the tiles in the class where t belongs. 

 4. To complete the coloring, assign a color to every element of the set { }GggJt ∈: . One 
element of this set has color c, which is Jt. There should be 1−k  other elements or colors. 
 
 Hence, the index k of the subgroup J in G is the number of colors that can be used to perfectly 
color the orbit of tiles containing t. 
 

3. Coloring the Hyperbolic Plane 
 

3.1. Tessellating the Hyperbolic Plane. In [1], Aziz created a computer program Coloring the 
Hyperbolic Plane (CHP) that tessellates the hyperbolic plane with congruent triangles of interior angles 

p
π

, 
q
π

, and 
r
π

, where ππππ
<++

rqp
. Denote by e one of the triangles of the tessellation and call it the 

fundamental triangle. Let P be the reflection on the side of the triangle opposite the angle 
p
π

, Q as the 

reflection on the side of the triangle opposite the angle 
q
π

, and R the reflection on the side of the triangle 

opposite 
r
π

. The symmetry group G of the tessellation is generated by P, Q, and R, denoted by pqr∗ . 

 
 Given the fundamental triangle e, the tessellation may be recovered by getting the images of e 
under P, Q, R, and their products. There is a one-to-one correspondence between the elements of G and 
the triangles in the tessellation. Each triangle in the tessellation can then be labeled by the corresponding 



element of G. The action of G on the triangles of the tessellation, where Gg∈  acts on a triangle by 
sending it to its image, is equivalent to the action of G on itself by left multiplication. 

 

P
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Figure: (1) Labeling the triangles in the tessellation 

 
3.2. Coloring Using Right Cosets. If S is a subgroup of G of index n, a coloring using right (or left) 
cosets of S refers to a bijective map from the set of right (or left) cosets of S to a set of n colors. Triangles 
labeled by elements of a right (or left) coset are colored using the color assigned to the coset. In Figure 2, 
we give a coloring of the hyperbolic plane using right cosets of the subgroup S and in Figure 3, we give 
another coloring using left cosets of the subgroup S, where S represents a subgroup of index 3 of the 
hyperbolic triangle group 642∗ . 
 

2 3  
Figures: (2) Right coset coloring using S; (3) Left coset coloring using S 

 
 The right coset colorings of a given subgroup S of the symmetry group G of the tessellation plays 
an important role in studying the subgroup structure of G. S turns out to be the symmetry group of the 
colored tessellation and S fixes the colors of the tessellation. In this paper, we will use the right coset 
colorings generated by CHP to determine the subgroups of G that contain the stabilizer of the tiles in the 
given semi-regular tilings. 

 
4. Perfect Colorings of Semi-Regular 588 ⋅⋅  and 8104 ⋅⋅  Tilings 

 
In this part of the paper, we illustrate how to obtain perfect colorings of semi-regular 588 ⋅⋅  and 8104 ⋅⋅  
tilings using the given framework. Both tilings have symmetry group 542∗=G ; G contains rotations of 
order 5, 4, 2 with centers of the corresponding rotations lying on mirror lines. 
 
 In coloring the semi-regular tilings, we will make use of the subgroups of G. GAP [8] is used to 
generate a listing of the subgroups of G shown in Table 1. For the purposes of this paper, and due to 
coloring constraints, we will only consider subgroups up to index 5. 
  
 
 



List of Subgroups of *542 of Index <= 5: Number of Subgroups = 7 
1 Group( [ Q, R, P ] ) 
2 Group( [ Q, R, PRP ] ) 
2 Group( [ RQ, P ] ) 
2 Group( [ RQ, PQ ] ) 
4 Group( [ RQ, PRPQ ] ) 
5 Group( [ Q, P, RPR, RQRPRQR ] ) 
5 Group( [ Q, P, RPQR ] ) 

   Table: (1) Subgroups of 542∗  of index less than or equal to 5 
 
 The generators Q, R, P appearing in Table 1 are mirror reflections with axes shown in Figures 4 
and 5 for the respective tilings 588 ⋅⋅  and 8104 ⋅⋅ . 
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Figures: (4-5) Generators Q, R, and P 

 
4.1. Semi-Regular 588 ⋅⋅  Tiling. The semi-regular 588 ⋅⋅  tiling  has two orbits of tiles: the orbit of 8-
gons and the orbit of 5-gons. To construct the perfect colorings, we color each orbit of tiles separately. 
We first color the orbit of 8-gons. 
 
 First, note that the finite group that stabilizes an 8-gon is of type 4D , the dihedral group of order 
8. We need to select the subgroups iJ  that contains 4D . The condition that iJ  contains the stabilizer is 
always satisfied by G. To find other subgroups containing 4D , we will use the right coset colorings of the 
subgroups of G. To obtain the right coset colorings, we use the CHP program. 
 
 From the program, Figure 6 shows the right coset coloring using the subgroup 

RQRPRQRRPRPQJ ,,,1 = . Note that the subgroup D generated by the o90  rotation about the 
indicated point x and mirror about the horizontal line through x fixes the color of the given right coset 
coloring. Thus, the subgroup RQRPRQRRPRPQJ ,,,1 =  contains the group of type 4D  and can now 
be used to color the orbit of 8-gons for the 588 ⋅⋅  tiling. 
 
 Figure 4 shows the right coset coloring using the subgroup RPQRPQJ ,,2 = . Similarly, the 

subgroup D generated by the o90  rotation about x’ and mirror about the horizontal line through x’ fixes 
the colors of the coloring. Thus, the subgroup 2J  also contains 4D . 
 
 We are now ready to color the orbit of 8-gons. We will use the subgroups iJ , namely 1J , 2J , 
and GJ =3 . Using GJ =3 , we color all 8-gons using one color to obtain the coloring in Figure 8. 
 



 Next, we color the orbit of 8-gons using RQRPRQRRPRPQJ ,,,1 = . To obtain a perfect 

coloring using 1J , we first choose a representative tile t from the 8-gons. We then color tJ1  with black, 
as seen in Figure 9. To color the rest of the orbit, we apply the 5-fold rotation with center A lying on 
mirrors R and Q on tJ1  to obtain a coloring of five colors given in Figure 10. 
 
 Lastly, we color the orbit of 8-gons using RPQRPQJ ,,2 = . Coloring all tiles in tJ 2  black, 
we obtain Figure 11. Then we assign 4 different shades and textures of gray to the tiles in the other orbits 
by applying the 5-fold rotation about A to obtain Figure 12. 
 
 Next, we color the orbit of 5-gons. The finite group that stabilizes a 5-gon is of type 5D , the 
dihedral group of order 10. We now select the subgroup 'iJ  that contains the stabilizer. Aside from G, 

our choice for 'iJ  is the subgroup PRPRQ ,, . Figure 13 shows the right coset coloring using 

PRPRQ ,, . The subgroup generated by o72  about x” and mirror reflection about the horizontal line 

through x” fixes the colors of the coloring and is of type 5D . 
 
 To color the orbit of 5-gons, we let GJ ='1  to obtain Figure 14 and let PRPRQJ ,,'2 =  to 
obtain Figure 15. 
 
 To color the entire semi-regular tiling, we combine all the colorings of each orbit of tiles above. 
Thus, the resulting perfect colorings of the 588 ⋅⋅  tiling are shown in Figure 16. 
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Figures: (6-7) Right coset colorings of 1J  and 2J  respectively; (8) Perfect coloring of the orbit of 8-gons 

using GJ =3 ; (9) tJ1 ; (10) Perfect coloring of the orbit of 8-gons using 1J ; (11) tJ 2 ; 
(12) Perfect coloring of the orbit of 8-gons using 2J ; (13) Right coset colorings of '2J ; 

(14-15) Perfect coloring of the orbit of 5-gons 
 



 
Figure: (16) Perfect colorings of the 588 ⋅⋅  tiling 

 
4.2. Semi-Regular 8104 ⋅⋅  Tiling. The semi-regular 8104 ⋅⋅  tiling has three orbits of tiles: the orbit of 
4-gons, 10-gons, and 8-gons. We follow the steps given in 4.1 and color each orbit of tiles separately. 
 
 To color the 4-gons, we use GJ =1 , RQRPRQRRPRPQJ ,,,2 = , and RPQRPQJ ,,3 = , 

where iJD <4 . We have the three colorings in Figures 17, 18, and 19. 
 
 Next, we use GJ ='1  and PRPRQJ ,,'2 = , where '5 iJD < , to color the 10-gons shown in 
Figures 20 and 21. 
 
 Lastly, we use GJ ="1 , RQRPRQRRPRPQJ ,,,"2 = , and RPQRPQJ ,,"3 = , where  

"2 iJD < , to color the 8-gons in Figures 22, 23, and 24. 
  
 Next, we combine all these colorings to obtain the perfect colorings of the 8104 ⋅⋅  semi-regular 
tiling as seen in Figure 25. 
 

17 18 19 20
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Figures: (17-19) Perfect coloring of the orbit of 4-gons; (20-21) Perfect coloring of 

the orbit of 10-gons; (22-24) Perfect coloring of the orbit of 8-gons 
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Figure: (25) Perfect colorings of the 8104 ⋅⋅  tiling where the orbits do not share colors 

 
 Observe that if iJ  is used to color one orbit of tiles, it can also be used to color a second orbit of 
tiles as long as iJ  contains the stabilizer of a tile in the second orbit of tiles. Moreover, if a color used to 
color tile t in the first orbit of tiles is to be used to color tiles in the second orbit, then the tile t’ that will 
be assigned the same color as tile t should have a stabilizer contained in iJ . 
 
 In coloring the 8104 ⋅⋅  tiling, the orbit of 4-gons and the orbit of 8-gons can share the same 
color. These colorings appear in Figure 26. The colorings A and B are obtained using GJ =1 to color 
both orbits of 4-gons and 8-gons. The colorings in C and D are obtained using 

RQRPRQRRPRPQJ ,,,2 =  while the colorings in E and F are obtained using RPQRPQJ ,,3 = . 
 

FDBA C E  
Figure: (26) Perfect colorings of the 8104 ⋅⋅  tiling where the orbits share colors 

 
5. Conclusion 

 
In this note, we give an approach to color semi-regular tilings on the hyperbolic plane. We use the general 
framework for coloring planar patterns where an orbit of tiles in the given tiling is colored using a 
subgroup of the symmetry group G of the tiling containing the stabilizer of the tile. We use the GAP 
program to generate the subgroups of G while a helpful tool in studying more closely the subgroup 
structure of G is the CHP program. 
 



 We intend that the approach provided here in obtaining perfect colorings of semi-regular tilings 
will provide a springboard in the construction of colorings (both perfect and non-perfect) of tilings in 
general on the hyperbolic plane. 
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