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Abstract

Musicians have narrowed the continuous range of frequency into discrete sequences of frequencies, interpreted as pitches, of
various types called scales from the earliest  writings on music onwards.  This study provides some answers as to scope and
relationships between modes and scales in areas where, surprisingly, little systematic study has been done. The approach reveals
that the Fibonacci sequence provides the key to unlocking the question of scope. Techniques from post-tonal and modal music
theory provide answers to relational questions.

1. Preliminaries

Musicians  have narrowed  the  continuous  range of  frequency  into  discrete  sequences  of  frequencies,
interpreted as pitches, of various types called scales from the earliest writings about music onwards.1 We
pass  over  other  topics  deeply  intertwined  with  scales  such  as  tuning  and  temperament  as  well  as
referential  pitch  level  in  order  to  focus  on an enumeration  technique  for  stepwise  sequences.  These
partition the space between terminal pitches formed by boundary intervals of less than or equal to the
octave.  Each of these sequences  may be thought of  as  a scale  with  a distinct  structure  selecting the
pitches for an instance of that scale type.

Thinking of a scale as a sequence of intervals rather than of pitches has the natural advantage of
abstraction.  These  sequences  form  equivalence-classes  induced  by  transposition  (translation  in
mathematical terms); the pitches change while the intervallic sequence remains invariant. Usually, the
first and last notes of a scale mark a 2:1 frequency ratio between them called the octave, and this acts as a
modulus  that  maps  the  octave  related  frequencies  into  the  type  representative  within  the  scale.
Parsimonious for this study means that the interval between any two adjacent notes of the scale must be
either  a  semitone  or  a  whole  tone  (two  semitones),  and  given  historical  musical  practice,  this  is  a
reasonable limit for adjacent-note intervals, parsimonious intervals.2 For example, the C major scale or

1 The earliest theoretical writings on music are Asian and predate Western theories by about a thousand
years. For a recent study of such thought, see Clough, Douthett, Ramanathan, and Rowell [1].
2 While there are from a parsimonious point of view, “gapped” scales such as the harmonic minor, these
play a lesser role in actual musical practice.
   Richard Cohn [2a] first emphasized the idea of parsimony with respect to voice-leading as a direct
outgrowth from work by Hugo Riemann.  We have The further  developed this  idea  in Hermann and



Ionian mode is represented as follows where the letter names of the pitches are listed and aligned beneath
are distances given in semitones that constitute the parsimonious sequence:3

C  D E F G A B C
    <2      2      1      2      2        2       1>

As has been long well known, using this parsimonious sequence starting on any other pitch generates
another member of the major scale equivalence-class induced by transposition. Here the two Cs form the
boundary pitches and the boundary interval between them is the octave. Naturally, the intervals of these
parsimonious  sequences  sum  to  the  boundary  interval,  12,  and  that  intervallic  distance  is  another
definition for the octave.

Other well known parsimonious sequences that have the boundary interval of the octave include
the octatonic, <12121212>,  and whole tone scales, <222222>; however, there are many other less well
known as well as the ubiquitous modern church modes that we will specifically revisit later. As we can
see from the parsimonious sequences above, there is more than one cardinality of parsimonious intervals
that generates a scale between the boundary intervals of an octave: the major scale has 7, the octatonic 8,
and the whole tone has 6 parsimonious intervals partitioning the octave. We q be the number of intervals
in the parsimonious sequence.

Musicians also find it useful to study scales with other boundary intervals. For instance in the
Medieval  and  Renaissance  eras,  tetrachords,  pentachords,  and  hexachords  (four,  five,  and  six  note
sequences) figured prominently in music theory; these have boundary intervals of 5, 7, and 9 semitones
respectively.4 Thus, we study parsimonious sequences for all sizes of boundary intervals between 1 and
12.  The  enumeration  technique  presented  here  is  general  for  parsimonious  sequences  of  any  sized
boundary interval.5 While there are historical and current uses for parsimonious sequences where n is less
than 12, the octave modulus remains in effect for all sequences in this study.

2. An Enumeration Technique for Parsimonious Sequences

An insight that some of the resulting intervallic distances in a scale sum to Fibonacci numbers led us to
investigating its relevance. Taking the C major scale above, we have <2212221> where the parsimonious
interval values of 1 and 2 themselves, the sum of the second two digits, and the sum of the first three
digits are Fibonacci numbers.6

Douthett [2b], Douthett and Hermann [2c], and here.
3 Renaissance  church  modes  differ  from the  modern  church  modes  as  used  by composers  such  as
Debussy  and  Ravel  as  well  as  by  jazz  musicians  to  this  date.  Because  the  tuning  systems  of  the
Renaissance did not result in closed systems, very few transpositions were available, and several of the
intervals  had  two  different  sizes.  Today’s  equal  temperament  system  is  closed  allowing  intervallic
patterns to be transposed to start from any pitch in the system and each interval is of only one size. It is
ironic that the Renaissance church modes are named for locations in the ancient Hellenic world predating
Christianity and that the Italian scholars of the middle ages mistranslated the ancient texts and associated
the wrong place names with these scalar patterns. See David E. Cohn [3a] for more on this historical
mistake and Cristle Collins Judd [3b] for information on the modes during the Renaissance. The Locrian
mode is of modern invention predating World War II. It is used today in jazz pedagogy and is helpful for
our purposes as it provides a name for that rotation-class member.
4These music theoretical works were frequently pedagogical. For a brief study on music theory pedagogy
from Antiquity to the present that touches on these intervals and their role in context, see Wason [4].
intervals 5, 7, and 9 are know as the perfect fourth, perfect fifth, and major sixth in music of those eras.
5For more on these mappings and the operation of transposition (translation), see Morris [5].
6See Kramer [6a] for more on the Fibonacci  series in 20th-century music and Huntley [6b] for other



In tackling this problem, there are two questions to be answered initially. 

Question 1: Given a boundary interval of length n and parsimonious sequences with m whole-
steps, how many distinct sequences are there? 

Question 2: Given a boundary interval of length n, what is the total number of distinct 
parsimonious sequences? 

To address the first question, we need the formula that determines the number of ways to choose
m objects from a set of n distinct objects (n choose m):

( )
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The numbers generated by this formula are also called binomial coefficients. This relates to the question
in the following way: Suppose our boundary length is n = 5. If there are 5 intervals in the sequence, then
all  5 are half-steps  and there are 0 whole-steps.  One can think of this  sequence as having 5 distinct
positions and that 0 of them will be whole-steps.  Whence, there are 5 choose 0 sequences with 5 half-
steps and no whole-steps:

( ) 5!C 5,0 1
0!5!

= = .

On the other hand, with 4 intervals and a boundary length of 5, 1 of the intervals must be a whole-step.
Whence, of the 4 distinct positions, 1 must be chosen to be whole-step.  It follows that there are 4 choose
1 sequences with 3 half-steps and 1 whole-step:

( ) 4!C 4,1 4
1!4!

= = .

The sequences are

<2111>, <1211>, <1121>, and <1112>.

Finally, with 3 intervals and a boundary interval of length 5, there are 2 whole-steps.  So, there are 3
choose 2 ways of placing the whole-steps in the sequence:

( ) 3!C 3,2 3
2!1!

= = .

These sequences are

<221>, <212>, and <122>.

Any fewer  than 3 intervals  in our  sequence with  boundary length 5 and our sequence  could  not  be
parsimonious.  So, we stop.  For a boundary interval of length n and m whole-steps in the sequence, there
are C(n–m,m), 0 / 2m n≤ ≤ ⎢ ⎥⎣ ⎦ , distinct parsimonious sequences (if / 2m n> ⎢ ⎥⎣ ⎦ , then the sequence cannot
be parsimonious).

On the second question, we need the Fibonacci numbers: F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6

= 8, F7 = 13, and so forth (F1 = 1, F2 = 1, and Fn = Fn-1 + Fn-2). Note that the total number of parsimonious
sequences with boundary length 5 in the example above is a Fibonacci number:

applications of the series.



Total = C(5,0) + (4,1) + (3,2) = 8 = F6.

This is not a coincidence! In general, to get the total number of parsimonious sequences for a boundary
interval of length n, all the cases above must be added together:

( ) ( ) ( ) ( )Total C ,0 +C -1,1 +C - 2,2 C / 2 , / 2n n n n n n= + + − ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⋯ .

It is known in mathematics that this sum is the Fibonacci number Fn+1; that is,

( ) ( ) ( ) ( )1F C ,0 +C -1,1 +C - 2,2 C / 2 , / 2n n n n n n n+ = + + − ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⋯ .

For n = 1 through 12, Table 1 below shows the number of parsimonious sequences in which m
whole-steps appear (Column 3) and the total number of parsimonious sequences (Column 2). For each
boundary interval length  n in Column 1, the sum of the values in Column 3 yields the corresponding
Fibonacci number shown in Column 2.

      n  Fn+1 Values of C(  n–m,m  ) where   n   is the interval boundary length  
      1      1  C(1,0) = 1
      2      2  C(2,0) = 1    C(1,1) = 1
      3      3  C(3,0) = 1    C(2,1) = 2
      4      5  C(4,0) = 1    C(3,1) = 3     C(2,2) = 1
      5      8  C(5,0) = 1    C(4,1) = 4     C(3,2) = 3
      6    13  C(6,0) = 1    C(5,1) = 5     C(4,2) = 6   C(3,3) = 1
      7    21  C(7,0) = 1    C(6,1) = 6     C(5,2) = 10 C(4,3) = 4
      8    34  C(8,0) = 1    C(7,1) = 7     C(6,2) = 15 C(5,3) = 10 C(4,4) = 1
      9    55  C(9,0) = 1    C(8,1) = 8     C(7,2) = 21 C(6,3) = 20 C(5,4) = 5
    10    89 C(10,0) =1    C(9,1) = 9     C(8,2) = 28 C(7,3) = 35 C(6,4) = 15 C(5,5) = 1
    11  144 C(11,0) = 1 C(10,1) = 10   C(9,2) = 36 C(8,3) = 56 C(7,4) = 35 C(6,5) = 6
    12  233 C(12,0) = 1 C(11,1) = 11 C(10,2) = 45 C(9,3) = 84 C(8,4) = 70 C(7,5) = 21 C(6,6) = 1

Table 1: The Number of Parsimonious Sequences for n = 1 to 12.

These sums to Fibonacci numbers can also be seen in the Pascal triangle in Table 2.  Each arrow
goes through the binomial coefficients that sum to the Fibonacci number at the head of the arrow.  The
coefficients that sum to the Fibonacci number Fn+1 are the number of parsimonious sequences with  m
whole-steps and boundary length n.  For example, the arrow that points to F6 goes through the numbers 1,
4, and 3, which are the number of parsimonious sequences with boundary length 5 that contain 0, 1, and
2 whole-steps, respectively.

Table 2: The Pascal Triangle with Diagonal Sums to Fibonacci Numbers.

1
1

1
1

1
1

1
1

1

1
2

3
4

5
6

7
8

1
3

6
100

15
21

28

1
4

10
20

35
56

1
5
15

35
70

1
6
21

56

1
7
28

1
81

F
1F

2F
3F

4F
5F

6F
7

F
8F

9



While it is easy to generate the specific parsimonious sequences when the value of  n is low, it
becomes progressively less so as the Fn+1 values make their rapid climb. So a third question emerges.

Question 3: What are efficient methods for generating all specific parsimonious sequences with a
boundary interval of n?

Before we answer this question directly, it is convenient to return to the modern church modes. Recall
the major scale—Ionian mode presented above. Clearly, rotating the notes so the last note becomes the
first preserves its parsimonious structure.  Since there are 7 distinct notes, there are 7 different rotations,
and it is these rotations that define the modern church modes.  Table 3 lists these rotations, and each
mode’s name is given to the write of the sequence.  These modes form a rotation-class of parsimonious
sequences with a boundary interval of length  n = 12.  The rotations of the octatonic scale, discussed
above form another rotation class of parsimonious sequences with a boundary length of 12.  In this case,
there are only 2 sequences in this class; <12121212> and <21212121>.  The whole-tone scale rotation-
class has only 1 member: <222222>.  Whence, every parsimonious sequence with boundary length 12
belongs to some rotation-class.7  This observation will be useful in answering the question posed above.

C D E F G A B C Ionian
           <2       2        1       2        2         2        1>

B C D E F G A B Locrian
     <1        2         2        1        2        2        2>

A B C D E F G A Aeolian
     <2        1        2        2        1        2        2>

G A B C D E F G Mixolydian
      <2        2        1        2        2        1        2>

F G A B C D E F Lydian
      <2        2        2        1        2        2        1>

E F G A B C D E Phrygian
      <1        2        2        2        1        2        2>

D E F G A B C D Dorian
      <2        1        2        2        2        1        2>

Table 3: The Rotation-Class of the Modern Church Modes.

For  our  purposes  here,  we  may  informally  describe  a  method  for  obtaining  all  specific
parsimonious sequences. We start with the sequence of all parsimonious interval 1s summing to  n and
then  successively  adding  a  parsimonious  interval  2  (subtracting  the  requisite  number  of  1s),  which
generates all of the members of each rotation-class that sum to n. As we know how many parsimonious
sequences  are  in  a  rotation-class  of  length n,  we  can  divide  each  C(n,m)  within  some specific  Fn+1

situation by the appropriate  q to remind us of how many rotation-classes are needed. The process ends
when the rotation-class of all parsimonious interval 2s in the case of even values for n or all 2s plus one 1
in  the  case  of  odd values  for  n is  recorded.  Table  4  uses  this  method  to  generate  all  parsimonious
sequences for n = 9, F10 = 55. The rotation-classes are separated by rows of asterisks.

7See Rahn [7] for more on this operation in post-tonal (atonal)  music theory, but it  is not limited to
parsimonious sequences.



<111111111> 
* * * * * * * * * * *
<11111112>, <21111111>, <12111111>, <11211111>, <11121111>, <11112111>,

<11111211>, 
<11111121>
* * * * * * * * * * *
<1111122>, <2111112>, <2211111>, <1221111>, <1122111>, <1112211>, <1111221> 
* * * * * * * * * * *
<1111212>, <2111121>, <1211112>, <2121111>, <1212111>, <1121211>, <1112121>
* * * * * * * * * * *
<1112112>, <2111211>, <1211121>, <1121112>, <2112111>, <1211211>, <1121121>
* * * * * * * * * * *
<111222>, <211122>, <221112>, <222111>, <122211>, <112221>
* * * * * * * * * * *
<112122>, <211212>, <221121>, <122112>, <212211>, <121221> &
* * * * * * * * * * *
<121212>, <212121>
* * * * * * * * * * *
<121122>, <212112>, <221211>, <122121>, <112212>, <211221> &
* * * * * * * * * * *
<12222>, <21222>, <22122>, <22212>, <22221>

Table 4: The Parsimonious Sequences of n = 9, F10.

3. Observations on Parsimonious Sequences

Just as today’s musicians may think of the modern church modes as a set of scales preserving intervals
under  rotation  that  is  based  on  the  traditional  diatonic  collection,  any  of  the  rotation-classes  of
parsimonious  sequences  may be  thought  of  as  a  unique  collection  of  “parsimonious  modes.”  In the
diatonic collection, the choice of the mode Ionian—major scale as the type representative of this rotation-
class is arbitrary from this point of view as it would be for any such class.8 

Many composers from Debussy onwards have been intensely interested in the effects of mirror
symmetry (reflection) in musical materials including scales as demonstrated by actual passages of music.9

Returning to Table 3, we may see reflection within or between the modern church modes. Note that the
Dorian mode’s sequence of parsimonious intervals are the same whether read from left to right or the
reverse. This mode’s intervallic structure and any other with this feature are invariant under reflection.
This operation is called inversion by musicians. Modes that are not their own reflection, not invariant, are
paired with another that holds the same sequence of intervals when read in the opposite direction. These
inversionally  equivalent  pairs  in the modern church modes are  Ionian/Phyrgian,  Locrian/Lydian,  and
Aeolian/Mixolydian as can be confirmed in Table 3. When the value of n is less than or equal to 8, the
inversionally equivalent pairs are found within the same rotation-class. For values of  n greater than 8,
this is usually but not always the case. Returning to Table 4, note that two of the rotation-classes have
ampersands, “&,” after the last member of the class. In these cases, one member of each inversionally
equivalent pair is found within one ampersand marked rotation-class and the other of the pair is found in

8For a recent study on transformations between modes in a similar sense of the same value for n, see
Santa [8].
9For well known examples, see Bartók [9a], Debussy [9b], and Webern [9c].



the other ampersand marked rotation-class. As  n increases, so does the number of inversionally paired
rotation-classes.  As  a  last  point  made  here  on  Table  4,  those  parsimonious  sequences  that  are
inversionally invariant (self reflections) are presented in boldface type.

4. Concluding Thoughts

With this enumeration technique, musicians can quickly generate all parsimonious sequences (“scales”)
and recognize their rotational (“modes”) and inversional equivalences for any value of n of interest. Jazz
musicians in particular may find this of interest as their pedagogy is today centered on the application of
a wide variety of scales and modes.10 While some post-tonal composers and theorists have studied pitch-
class sets and their various transformational groups quite extensively, they have not given the same kind
of attention to modes and scales much less to parsimonious sequences.11 Given this intense interest in
pitch structures and scales/modes during the last century or so, it is odd that we know of no previous
study that provides a map of the terrain and a means for traversing it.12 For our musician friends, here is
that map and vehicle; enjoy the trip!
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