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Abstract

Most pieces of popular dance music feature repeated patterns of rhythmic accents, or beats. We use the Discrete
Fourier Transform and the Periodicity Transform (Sethares and Staley, 1999) to identify the primary rhythmic con-
tent of a piece of popular music. Before applying the transforms, we reduce the data by filtering out pitch. We
use the data reduction method proposed by Scheirer (1998), which separates recorded music into bands of pitches,
roughly half an octave each, and extracts the pattern of energy bursts in each band. After applying the DFT and PT,
we find that the basic rhythmic structure, or meter, of the piece we analyzed is reflected in the relationship between
periodic accents made by low- and high-pitched instruments. We have written MATLAB algorithms that implement
these methods. Audio examples are available at http://www.sju.edu/˜rhall/Bridges .

1. Introduction

Even to the untrained ear, it is quite apparent that mathematics is at play in music. As one delves deeper,
one realizes that not only is math involved in music, but that there is an inextricable connection between
the world of mathematics and every single element of music—whether it be the theory of sound waves,
the physics of instruments, or the structure of musical rhythm. In this paper we demonstrate a method for
detecting the underlying rhythmic structure of a piece of popular music.

Periodic phenomena occur in music at different levels. Musical instruments produce vibrations, which
in turn create periodic variations in air pressure, producing sound. The limits of humanly audible sound are
20 to 20,000 Hz (cycles per second). The sounds produced by musical instruments are more complex than
pure sine waves, but generally one frequency or range of frequencies predominates. Pitch is the relative
highness or lowness of an audible sound, determined by the frequency of the vibration producing the sound.
We use the word “pitch” to designate audible frequencies above 20 Hz. In popular music, especially dance
music accompanied by drums, there are also heavy periodic rhythmic accents, produced by bursts of energy
within an audible sound—that is, changes in the amplitude of the sound wave. Our project involves the
study of these periodic accents, or beats. Pitch and beats operate on a different scale—pitches are typically
measured in hundreds or thousands of cycles per second, while beats are measured in tens to hundreds of
cycles per minute. However, both pitches and beats are periodic phenomena, and so we can borrow some of
the traditional methods used to study pitch in our study of rhythm.

We use mathematical techniques to detect the underlying rhythmic organization, or meter, of a piece of
recorded popular music. Meter is reflected in the strength of accents that are placed on each beat. The
basic unit of time is the measure, which is subdivided into a number of equal beats, each of which may be
further subdivided into half notes, quarter notes, and so on. Accents are used to mark the divisions and have
a hierarchy stemming from the order in which they are created. Each time a division is made, the accents
on newly created beats are weaker. Music contains many high and low sounds produced by many different
instruments and voice. Despite all of this activity, our ears can almost always detect the meter of a musical
work. Why is it that the meter stands out so easily? Our work sheds some light on this question.

http://www.sju.edu/~rhall/Bridges


2. Sampling and Data Reduction

When we hear music played the waveform is continuous. In order to produce a CD, which cannot hold an
infinite amount of data, the continuous waveform must be sampled, meaning that a discrete set of values
is taken from the original waveform at regular time intervals. The more samples that are taken per second,
the more closely the discrete function resembles the continuous function. We assume that the sampling
is sufficiently frequent that we don’t lose much audible information by using the discrete approximation.
Typically, the original waveform is sampled at 44.1 kHz (44,100 Hz), meaning that 44,100 sample points
are taken per second.1 Since a sampled sound is discrete, we can use MATLAB to analyze it—think of
the sampled music as a very long vector. At this sampling rate, a one-minute song contains 2.646 × 106

samples! Performing any analysis on this many samples requires lengthy computations. However, we have
established that meter is a low frequency component of music, so the pitch may be filtered out without
compromising the rhythmic information.

We followed an algorithm proposed by Eric D. Sheirer [8], and improved upon its implementation in
MATLAB by Sethares and Staley [10]. Our algorithm separates recorded music into 21 frequency bands, of
roughly half an octave each, and extracts the energy in each band. The output of this process is an audio
matrix. The 21 rows of this matrix represent the changing energy in each band, and the columns provide
the time dimension. The algorithm serves two functions: to strip the signal of pitch, while still preserving
the rough relationships between high and low sounds, and to reduce the amount of data, thus making the
DFT and PT computations shorter. Consider an arbitrary signal, s, sampled at 44.1 kHz. To begin, s is
stripped to a mono signal (that is, a vector). The algorithm moves along s from beginning to end taking
windows—vectors consisting of some fixed number of consecutive entries from s. We overlap our windows
so that prominent frequencies are not split between windows. Filters are used to split each window into 21
frequency bands (think of the filters as a sort of prism). The energy in that band, defined to be the square
root of the sum of the squared magnitudes of the Fourier coefficients, is then computed. The output is a
column vector containing only 21 entries; the first row contains the energy in the lowest pitch band, and the
last row contains the energy in the highest pitch band. This process of taking a windows continues until we
reach the end of the signal. The end result is an audio matrix of size 21× (number of windows). Each row
in the matrix represents the variations in energy in one pitch band for the duration of the piece. See Figure 1
for the image of an audio matrix.

3. The Discrete Fourier Transform

Once the data is reduced, we can apply the discrete Fourier transform (DFT), which decomposes the signal
in each band into a sum of discrete sinusoids. A graph of the magnitudes of the coefficients of these sinusoids
gives us information about integer frequencies in the signal; a spike at a particular frequency implies that the
frequency is prominent in the signal. Although musical rhythm is rarely periodic, the pattern of accents in
most popular dance music is “periodic enough” to be analyzed by the DFT, because popular music features
repeated drum beats and is recorded to a metronome track that keeps the drummer perfectly in time. The
DFT is typically applied to periodic signals, but, in practice, we can still gain relevant information from
approximately periodic signals. Finally, we compare the DFTs of each frequency band to determine the
meter of the piece.

3.1. Details of the DFT. Let’s investigate discrete periodic functions of a fixed period N . Any discrete
periodic function is of the form f [n] where n ∈ Z and f [n + N ] = f [n] for some integer N , which is

1The reason for this high number of samples is the Nyquist Theorem, which states that a continuous waveform can be recon-
structed from discrete samples as long as its frequency is less than half the sampling rate. Since the limit of audible sound is 20
kHz, we must sample at more than 40 kHz.



referred to as a period of f . We can write any N -periodic discrete function f in the form:

f [n] =

N−1∑

k=0

F [k] e2πikn/N ,where F [k] =
1

N

N−1∑

n=0

f [n] e−2πikn/N .

The representation above is called the Discrete Fourier Transform (DFT).2 The function F [k] gives the
coefficients of the sinusoids present in the musical sound. The magnitude |F [k]| = (F [k]F [k])1/2 of each
coefficient is the strength of each frequency component.

3.1.1. Example. Let f [n] be the discrete 4-periodic function defined by f [0] = a, f [1] = b, f [2] =

c, f [3] = d, and f [n + 4] = f [n]. Then f [n] = F [0] + F [1]eπin/2 + F [2]eπin + F [3]e3πin/2, where
F [0] = 1

4(a+b+c+d), F [1] = 1
4(a+bi−c−di), F [2] = 1

4(a−b+c−d), andF [3] = 1
4(a−bi−c+di). Let’s

examine these coefficients more closely. We can see that |F [1]| = |F [3]| = (1/4)((a− c)2 + (b− d)2)1/2

So, if f is 2-periodic (that is, a = c and b = d), then F [1] = F [3] = 0. Likewise, if f is approximately
2-periodic, that is if a ∼ c and b ∼ d, then F [1] and F [3] are relatively close to zero.

As seen in this example, the DFT identifies prominent frequencies in a signal. We graph the magnitudes
of these coefficients to get a clear picture of the different frequencies present in the signal. Observe that if
f is a real-valued function, F [N − k] = F [k], and hence |F [k]| = |F [N − k]|, so the graph of |F [k]| is
symmetric with respect to k = N/2, and therefore it is sufficient to graph the magnitudes of the first N/2
values of f (see Figure 2 for an example).

3.2. Analyzing Musical Rhythm Using the DFT. The DFT is a standard tool for analyzing pitch. We
can also employ the capabilities of the DFT to analyze rhythm. By removing the pitch, we are left with the
rhythmic components of the musical piece. When the DFT is applied to these components, much information
about the rhythmic structure of the piece is revealed, including the relative strength of repeated beats in the
song (see Section 5 for an example). However, the DFT has significant limitations in analyzing rhythm.
It detects integer frequencies—but when studying rhythm, the period, and not the frequency, is significant.
Moreover, the DFT makes it difficult to observe those periodic rhythmic structures, such as phrases, that are
not as frequent as the beat. The Periodicity Transform, proposed by Sethares and Staley [9], addresses these
limitations by searching for integer periods.

4. The Periodicity Transform

Let x be our signal. The idea behind Sethares and Staley’s Periodicity Transform (PT) is to define a metric
on the space of periodic vectors and find x∗, the closest periodic vector to x with respect to this metric. By
subtracting x∗ from x, we get a residual vector r. We then search for the closest periodic vector to r, subtract
that vector from r, and the process is repeated. Finally, we have a decomposition of x = x∗ + r∗1 + r∗2 + . . .
into periodic vectors. Like the basis elements in the DFT, these periodic vectors give us an idea of the
relative strengths of periodicities within x.

4.1. The space of p-periodic vectors. Recall that x[k], k ∈ Z is p-periodic if x[k + p] = x[k] for all
p. Let P = all periodic vectors and let Pp = all p-periodic vectors. Notice that both P and Pp form vector
spaces since they are both closed under addition and scalar multiplication.

We now need to define a basis vector for Pp. The following sequence is a fitting choice:

δsp[i] =

{
1, if (i− s) = 0 (mod p)
0, otherwise

2Although upon first glance, the DFT equation may not appear to yield a periodic function, Euler’s formula (eiθ = cos θ+i sin θ)
can be used to rewrite it as a sum of sines and cosines. If f is a real-valued function, the imaginary parts cancel.



For example, δ4
0 = . . . , 1, 0, 0, 0, 1, 0, 0, 0 . . .. Note that δ4

1 , δ
4
2 and δ4

3 will all just be shifts of δ4
0 .

Consider the following product:

〈x, y〉 = lim
k→∞

1

2k + 1

k∑

i=−k
x[i] y[i]

for elements x, y in P . We claim that this is an inner product on P . The limit will always exist since if
x ∈ Pp1 and y ∈ Pp2, x[i] y[i] ∈ Pp1p2 since it is now p1p2-periodic. The inner product now becomes
〈x, y〉 = 1

p1p2

∑p1p2−1
i=0 x[i] y[i] or the average of the p1p2-periodic vector over a single period. We now

have a way to measure distance: ||x|| = 〈x, x〉1/2 .

Signals x and y in an inner product space are orthogonal if 〈x, y〉 = 0, and two subspaces are orthogonal
if every vector in one is orthogonal to every vector in the other. Notice, however, that no two periodic
subspaces Pp are orthogonal since P1 ⊂ Pp for every p. Moreover, Pnp ∩ Pmp = Pp when n and m are
mutually prime. As an example, take P4 and P6. If x ∈ P4 ∩ P6, then x ∈ P4 and x ∈ P6. For this to be
true, x must also be 2-periodic (indeed, p = 2 and n = 2, m = 3).

4.2. Projection onto p-periodic subspaces. The following result is stated and proved in [9].

Theorem 1 (Sethares and Staley) Let x ∈ P be an arbitrary signal. A minimizing vector in Pp is an
x∗p ∈ Pp such that ||x− x∗p|| ≤ ||x− xp|| for all xp ∈ Pp. The vector x∗ given by

x∗ = α0δ
0
p + α1δ

1
p + . . .+ αp−1δ

p−1
p ,

where αi = p〈x, δip〉 for 0 ≤ i ≤ p− 1 is the unique minimizing vector in Pp.

We will use the notation π(x,Pp) to represent the projection of x onto Pp.

4.2.1. Example. Let x = . . .1, 1, 0, 1, 1, 4, 0, 2, . . . ∈ P8. The projection of x ontoP2 is the vector x∗2 =
. . . 1

2 , 2,
1
2 , 2,

1
2 , 2,

1
2 , 2, . . . and the residual is r2 = x− x∗2 = . . . 1

2 ,−1,−1
2 ,−1, 1

2 , 2,−1
2, 0, . . .The projec-

tion of x onto P4 is x∗4 = . . .1, 5
2 , 0,

3
2 , 1,

5
2 , 0,

3
2 , . . . , and the residual is r4 = x− x∗4 = . . .0,−3

2 , 0,−1
2, 0,

3
2 , 0,

1
2 , . . .. Notice that projecting r4 onto P2 gives the zero vector. This makes sense, because r4 is the

original signal with all 4-periodic subsignals removed. All 4-periodic signals are necessarily 2-periodic, and
so π(r4,P2) = 0. In fact, we have the following theorems, due to Sethares and Staley [9]:

Theorem 2 (Sethares and Staley) Let rp = x − π(x,Pp) be the residual after projecting x onto Pp and
rnp = x− π(x,Pnp) be the residual after projecting x onto Pnp. Then rnp = rp − π(rp,Pnp).

Theorem 3 (Sethares and Staley) Let x be a periodic vector and p and n be positive integers. Then

π(x,Pp) = π(π(x,Pp),Pnp) = π(π(x,Pnp),Pp).

Corollary 1 (Sethares and Staley) The projection of rnp onto Pp is the zero vector.

Theorem 3 shows that the order of projection of a periodic vector x onto subspaces Pp and Pnp does not
matter, since π(x,Pnp) is an average over every npth entry in x.

It is advantageous at this point to take a step back and think about what it is we are actually doing here.
When we project our signal x onto Pp, we are stripping it of all its p-periodic components. However, the
residual may still have other relevant periodicities, and so we should project this “new signal” onto other
subspaces (perhaps Pq,Ps . . .) to extract them as well.
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Figure 1: Image of the audio matrix for ZZ Top’s “Sharp Dressed Man”

4.3. Nonuniqueness. Before going on, it is necessary to consider the nonuniqueness of this projection.
We have seen above that in some cases (precisely, when the period of one subspace divides the period of the
other), the order of projection does not matter. This is not true in general. While the DFT deals with orthog-
onal subspaces, the periodic subspaces Pp are not orthogonal to each other. Therefore, the representation of
an arbitrary signal s as a linear combination of the basis elements is not unique. Furthermore, there is not a
unique order to choose projection onto periodic subspaces, since different orders may yield different results.

4.4. Algorithms. At the heart of the PT is its ability to choose among these subspaces and determine the
most relevant order in which to project. Sethares and Staley have proposed the Small-to-Large algorithm
in [9]; just as its name suggests, the this algorithm scans a signal for relevant periodicities beginning at
p = 2 and continuing up to larger ones. If the percent of the total energy removed by projection onto Ppi
is greater than a given threshold, the projection is carried out. Otherwise, that periodic space Ppi is skipped
and projection ontoPpi+1 is attempted. Observe that a “Large-to-Small” algorithm would be useless. Using
the results of Corollary 1, if we first project a signal onto a subspace Pnp, the residual will not contain any
of the smaller periodicities which are its divisors, p. This would yield misleading data. Sethares and Staley
propose three additional algorithms; we used the Small-to-Large algorithm in our calculations primarily
because it was the one that required the least amount of time to run.

5. Analysis of ZZ Top’s “Sharp Dressed Man.”

ZZ Top’s “Sharp Dressed Man” (Audio Example 1) has a constant heavy rhythm throughout the song.
Thus, we felt that this would be a good choice for analysis. The prominent beat of the song is introduced
immediately when the song begins. Figure 1 is an image of the audio matrix that was created for the first
7 seconds of the song. The vertical axis corresponds to the 21 pitch bands of the audio matrix; each pitch
band spans roughly half an octave, with the first band representing the lowest pitches. The horizontal axis
represents time. The image is color-coded in rainbow order depending on the energy in a particular pitch
band; red indicates high energy while blue indicates low energy.

http://www.sju.edu/~rhall/Bridges/audio1.wav
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Figure 2: DFT of data reduced “Sharp Dressed Man”

In order to verify that we have not lost important rhythmic information through data reduction, we wrote
an algorithm to output the audio matrix into a sound file using filtered white noise to fill in the rhythm bands
(Audio Example 2). The drum beats were well represented; in addition, the voice was somewhat preserved.
Other elements of the original song, such as the guitar, were almost completely lost. By creating the audio
matrix, we managed to identify the rhythm with a much smaller amount of data, while still preserving some
of the pitch information. The advantage of the 21-band audio matrix can be heard in Audio Example 3,
which is the result of collapsing all the audio information into one band (rather than 21) and thus losing
all information about pitch. Although the primary beat is quite audible, one cannot hear the relationship
between the high and low bands that are a prominent feature of the rhythm.

5.1. DFT Analysis. The DFT reveals the frequency of the periodic bursts of energy in each pitch band.
Figure 2 is a plot of the magnitudes of the DFTs of each row of the audio matrix superimposed. The colors
correspond to the pitch bands of the audio matrix, with red representing the highest band. The height of
a spike in the graph shows the relative prominence of each beat frequency within that band; we see a red
spike at 220 on the x-axis, caused by a steady beat occurring 220 times (roughly 4 times a second) in the
highest band. This enforces what we saw in Figure 1: a periodic high-energy burst in the upper pitches. This
prominent spike in the DFT graph is the hi-hat cymbals. This is not the basic beat of the song; when we
listen to the song, we tap our foot along with the bass drum. The blue spike at around 101 beats per minute
is the best candidate for the primary beat. The frequency of this spike is half that of the prominent spike;
that is, the high beat occurs twice for every low beat. We also see a spike in the middle bands at one-fourth
the frequency of the bass drum, giving us a good candidate for the measure.

5.2. PT Analysis. Since we wish to detect integer periods, we first resample the song so that one beat
corresponds to 12 samples (we chose 12 as a highly divisible number). Figure 3 shows the magnitudes of the
residuals of projections of each row of the audio matrix onto the periodic subspaces Pp; dark color indicates
small residuals—in other words, subspaces that are close to x. We see that the 12-sample beat predominates
in the high pitch bands, while the middle and low bands show either a 24-sample beat or a 96 (= 4 × 24)
sample measure. This relationship occurs because the song is in duple meter: all the divisions of a measure
are by powers of two. Our implementation of the Small-to-Large a algorithm confirms this also. Figure 4
shows the magnitudes of the vectors resulting from the Small-to-Large decomposition of the signal. Again,

http://www.sju.edu/~rhall/Bridges/audio2.wav
http://www.sju.edu/~rhall/Bridges/audio3.wav


we see the numbers 12, 24, and 96 appearing as prominent periods.

6. Conclusion

We have discussed a few methods for quickly and efficiently detecting rhythm. Not only do our algorithms
detect the primary beat, but they also give clues about the meter, which is revealed in the hierarchy of
repeated accents and in the relationship between rhythms in the bass and the treble. In popular music, we
are able to detect the meter of a particular work. However, to extend these methods to music without a
metronomic beat would require additional processing, such as a beat tracking algorithm.
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Figure 3: Magnitudes of residuals of the audio matrix projected onto periodic subspaces
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Figure 4: Magnitudes of vectors in Small-to-Large decomposition of the audio matrix
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