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Abstract

In this paper, we modify a mathematical model for differential gene expression introduced
by Eggenberger for simulating cell morphology in order to evolve aesthetic imagery from
grids of cells. We focus upon investigating fitness criteria to use so that genetic learning
can effectively guide the evolution of the underlying cellular processes that lead to aesthetic
results. In the model, cellular processes are governed by regulatory genes and transcription
factors in such a way that cells with identical genomes exhibit differences during devel-
opment. By associating certain cell products with color channels, images obtained from
grids consisting of only two types of interacting cells are shown to yield a rich generative
framework for artistic exploration.

1. Introduction

Modeling cellular development for aesthetic purposes first received attention thanks to Fleischer’s
doctoral thesis [4] and his subsequent work [5] [6]. More recently, Hoar et al [9] used a model for
the life cycle of a bacterium to make images visualizing the simulated evolution of bacteria colonies
which they referred to as “creative bacteria patterns.” Complex models such as these that are used
for aesthetic pattern generation from cellular processes supersede earlier reaction-diffusion models
based on Alan Turing’s seminal paper [12]. Reaction-diffusion models for generating aesthetic
patterns have also been considered by many other authors [14] [13] [7] [2]. In this paper we
investigate an evolutionary framework for pattern formation arising from cellular processes based
on cell genomes that use regulatory genes. The genomics and cellular developmental model follow
[3]. After presenting our model, our principal focus is on the problem of formulating aesthetic fitness
criteria needed for implementing genetic learning in such as a way that it maximizes the aesthetic
potential of the evolved imagery. Due to its subjective nature, the problem of non-interactively
guiding evolution for aesthetic purposes is not well-studied. Previous approaches that are of interest
include those using neural nets [1][10], co-evolution [8], and statistical analysis [11].

2. Cell Genome

In this section we give a formal description of the genomes we use for our cells. The key idea is
that a genome consists of structural genes and regulatory genes, and that sequences of regulatory
genes affect, and are affected by, immediately adjacent sequences of structural genes. Formally, we
define a gene to be a string g0g1 . . . g7 of digits. The last digit g7 is called the marker of the gene.
Markers may assume any of the values zero through six, but all other digits are constrained to lie
in the range zero through four. For each gene, we calculate an offset o = g0 + g1 mod 3, a diffusion
coefficient d = (g2 + g3)/9, and a type t = g4 + g5 + g6 mod 5. A unit is a sequence of one or more
genes whose final gene has marker five concatenated with a sequence of one or more genes whose



final gene has marker six. Genes within the first segment are designated regulatory genes while
genes within the second segment are designated structural genes. The purpose of this definition is
to make it possible to “read” any sequence of genes and identify functional units simply by scanning
the sequence, segmenting on the basis of markers, and locating adjacent regulatory and structural
segments. Formally, then, a gene unit is a sequence of genes of the form R1R2 . . . RuS1S2 . . . Sv

where each Ri is a regulatory gene, and each Sj is a structural gene, but only Ru and Sv have
the requisite markers. Later we will restrict our attention to genomes with a fixed number of gene
units, each consisting of precisely two regulatory genes and one structural gene, but for the time
being we continue to maintain full generality in order to describe how cellular processes depend on
gene units.

In nature, individual cells maintain concentrations of transcription factors denoted TF’s. When
a structural gene is activated, or expressed, its type determines the resulting cell “products,” or
morphogens, that it produces. Cell products, by affecting the concentrations of TF’s, lead to higher
order cellular processes. Due to our incomplete understanding of the underlying effects of chemical
reactions within cells, and in light of the inherent complexity of modeling chemical reactions,
following [3], for the purpose of simulation we introduce a simplification by using a structural
gene’s type to directly initiate higher order cellular processes when it is expressed. In [3] examples
of higher order processes included cell division, cell death, creation of special molecules, creation
of new TF’s, etc. However, in our model when a structural gene is expressed the result is a change
in the concentration of one, and only one, of its cell’s TF concentrations and, as will be explained
shortly, in some situations a change in the concentration of that same TF in its neighboring cells.

3. Gene Activation

Given a gene unit R1R2 . . . RuS1S2 . . . Sv, in order to determine whether a structural gene S from
the unit is active, consider a fixed gene Rj from the regulatory sequence of the unit and the i-th TF
of the cell. Using the offset o of S, first extract the five digit string from Rj beginning at position o,
perform a base five conversion, and then subtract the result from the weight wi of the TF thereby
obtaining the affinity fi of Rj for the i-th TF. The weight wi an environmental quantity that for
us is constant across all cells. Note that since weights are allowed to be negative, fi is a signed
quantity. Now, multiply the affinity fi by the concentration ci of the i-th TF, and then sum over
all TF’s to obtain the activity level rj for Rj . Next, sum rj over all regulatory genes to associate
to S the quantity, a = 1/(1 + exp(Σjrj)). Finally, determine the activity level γ for S by setting

γ =

 −1.0 if a < 0.2
+1.0 if a > 0.8

0.0 otherwise
.

To make allowances for the inherent complexity, we make a further simplification by saying that
the structural gene S is expressed in an excitory state if γ = +1, expressed in an inhibitory state if
γ = −1, and not expressed otherwise. This simplification makes it easier to simultaneously manage
both the increases and decreases of TF concentrations within cells. With reference to [3], we should
point out that it is not clear precisely how Eggenberger makes use of the three different values γ
assumes, and also point out that his model is more sophisticated than ours because his calculation
for rj sums only over a “current list” of TF’s and his cell products are capable of dynamically
adding and removing TF’s from this current list.



4. Cell Development

In this paper we use four TF’s named Red, Blue, Green, and Communication. We devote one
structural gene to each TF and two regulator genes to each structural gene. Thus a cell consists of
a genome constructed from four gene units, with three genes per unit, together with concentrations
of each of the four TF’s. When expressed, a structural gene either increases or decreases the
concentration of the TF it affects. The extra feature in our model is that if the concentration in
the cell of the communication TF is sufficiently high then the concentrations in neighboring cells
of the TF under consideration will also change. It is under these circumstances that the diffusion
coefficient d of the structural gene comes into play. It is used to determine what proportion
of the increase (respectively decrease) of the affected TF’s concentration the structural gene’s
cell will receive, and what proportion of the increase (respectively decrease) in the affected TF’s
concentration all the neighboring cells will receive. More precisely, if structural gene S with diffusion
coefficient d is required to change the concentration of a TF by the amount ∆, then the cell’s
allotment of that change will be 100(1 − d)% while the remaining 100d% of that change will be
equally distributed among the eight neighboring cells. When cells are organized in a grid, cellular
development occurs over time by initializing TF concentrations for all cells and then simulating
the gene activation, TF concentration update cycle for all the cells for a prescribed number of time
steps.

Figure 1: An example showing the outside-in development of the cell pattern ob-
tained after 50, 150, 250, and 350 time steps.

5. Aesthetic Cell Development Patterns

By strategically locating a few cells with different genomes in the grid of cells and by strategically
initializing the TF concentrations of those cells, the simulation of the cell development algorithm
will yield a matrix of cells that can be visualized by interpreting the Red, Green, and Blue TF
concentrations as color channel values. Our objective is to control the factors responsible for
creating such cell patterns in such a way as to yield aesthetic imagery. To make this task more
manageable, we consider only square grids and permit only two different genomes to be assigned
to the cells within the grid. The two genomes are used to distinguish between cells that are either
specialized cells or substrate cells. A small, but fixed percentage of specialized cells are randomly
scattered in the grid and then the grid is filled in with substrate cells. Initial TF concentrations for
the cells are determined by imagining that a morphogen gradient is being applied to the grid. This
means that edge cells receive small, but fixed nonzero initial concentrations for their TF’s, while
interior cells have all their TF concentrations set to zero. The result is that cellular development
occurs slowly starting at the edges and working towards the center as shown in the time series for
a 20× 20 cell example in Figure 1. This further simplifies our task by only requiring us to decide
what genomes to use for the two different cell types and deciding how many time steps cellular



development should be allowed to proceed for. Since a suitable number of time steps can be
quickly determined experimentally once the grid dimensions are fixed, this only leaves the problem
of finding appropriate cell genomes. Our approach to this problem is to use a genetic algorithm
and let genetic learning participate in the solution.

6. Genetic Learning

To implement genetic learning using the simple genetic algorithm we consider a population of grids.
The genotype of a grid is determined by the genomes for its two cell types, and the phenotype of
a grid is the visualization of the matrix of cells following cellular development as described above.
Initial populations use randomly generated genomes. At the start of each run of the genetic
algorithm a randomly generated placement scheme for locating cells on a grid is fixed so that all
grids in the population will have their specialized cells and substrate cells identically positioned. To
mate two grids, we mate their two cell types — specialized cell genomes to specialized cell genomes
and substrate cell genomes to substrate cell genomes — by invoking one-point crossover followed
by point mutation on a gene by gene basis. To form breeding pairs of grids, we make random
selections from a breeding pool consisting of the most fit grids, typically the top four. Due to
the computational load, population sizes are small, typically 6-12, and the number of generations
allotted for genetic learning to occur is short, typically 5-20.

To determine grid fitness, we make use of quantities measured during the final cycle of cell devel-
opment. To help define these quantities we use the subscripts R, G, B, and C when referencing the
four TF’s. Let µi and σi denote the mean and standard deviation calculated over all the cells in
the grid of the concentration for the TF subscripted by i. Let Na denote the number of cells that
had a change in the activation status of at least one structural gene during the final development
cycle, and let Nb denote the number of cells in the grid that are dormant, meaning their R, G, and
B concentrations are all below trace levels whence they appear black in the visualization.

Figure 2: Examples using fitness functions: (a) F1 with δ = 1 which rewards both
communication among cells and variability within all color channels, (b) F1 with
δ = 0, (c) F2 which rewards patterns exhibiting variability within at least one color
channel, and (d) F2 giving rise to a pattern that is unusual because it has both
dormant and active substrate cells on its border.

Initial tests revealed that the fundamental obstruction to achieving aesthetic imagery using the
genetic algorithm was the presence within the population of grids with either too many dormant
cells or with monochrome colorings. Denoting by F (P ) the fitness of grid P , the first reliable fitness
function we discovered calculated fitness using

F1(P ) = σC
δ ·min(σR, σG, σB),



where δ is zero or one. This fitness function rewards grids that exhibit various communication
behaviors between neighboring cells and that possess highly variable color channels. It was used to
evolve the 25× 25 cell patterns in Figure 2a and Figure 2b. In fact, patterns such as those found
in Figure 2c and Figure 2d, obtained by changing the fitness function to

F2(P ) = max(σR, σG, σB),

showed that by ignoring the communication TF and rewarding those grids where at least one color
TF showed significant variability we could obtain promising results.

The principal drawback to the two fitness functions introduced so far is that although they con-
sistently produce interesting results, they do not exert sufficient evolutionary pressure on initial
populations of grids where a preponderance of grids have large numbers of dormant cells. This is
explained by the fact that a grid with a large number of black cells (indicating no TF activity) or
white cells (indicating maximal TF activity) that are set off against a background color produced
by active substrate cells can lead to misleading standard deviation measurements. Various fitness
functions we designed incorporating color channel averages and the “activity” measure Na failed to
alleviate this problem. To overcome this difficulty we used the dormancy measure Nb to introduce a
term for penalizing such patterns. This led us to formulate our two most successful fitness functions

F3(P ) =
Na ·min(σR, σG, σB)

1 + Nb
,

and

F4(P ) =
σC ·Na ·min(σR, σG, σB)

1 + Nb
.

Figure 3: (a) An example using fitness function F3, which incorporates a penalty
term for black, dormant cells, and (b) a high resolution example using fitness func-
tion F4, which also incorporated a penalty term for black, dormant cells.

Not only did these two functions lead to an increase in the number of interesting patterns that
were evolved, but they allowed us to increase the dimensions of our images while simultaneously
decreasing the percentage of specialized cells we used. This, in turn, led to a better understanding
of how the underlying cellular processes that were occurring within our cells functioned. The images
in Figure 2 used 20% specialized cells. Figure 3a shows an example of a 40× 40 pattern with only



5% specialized cells after only 300 developmental time steps that was evolved using the fitness
function F3, while Figure 3b shows a 50 × 50 pattern, also using only 5% specialized cells, after
only 400 developmental time steps that was evolved using the fitness function F4.

7. Conclusions

We have adapted a model for simulating cellular morphogenesis in order to generate aesthetic
cell patterns and we have investigated automating the search for such patterns using a genetic
algorithm. Initial results are encouraging. Given that random placement of only two different
types of cells within a grid was used to initiate the pattern formation process, future work will
consider the use of “template” placement schemes using additional cell types and the use of other
grid geometries so that cell interactions between tissue types can be simulated and visualized.
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