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Abstract 

We discuss the Hot Spots Conjecture, and some connections to elementary ideas in geometry 
and advanced calculus. 

1. Introduction 

Eigenvalue problems occur throughout applied mathematics, physics, engineering and finance, as 
well as music and the art. The important need of their study is recognized and appreciated in all 
the scientific disciplines where they frequently occur. 

Eigenvalue problems might be mathematically challenging, nevertheless they are suitable for 
presentation in classroom instruction, as their applied significance is easily understandable. In 
addition, their frequent connection to relatively simple geometry and advanced calculus problems, 
makes them appealing for a presentation connecting real word problems, physics and mathematics. 

We illustrate the above point, by looking at a well-known eigenvalue problem still not-completely 
resolved: the so-called Hot Spots Conjecture. The problem can be introduce even to a non-experts 
audience via its clear simple physical meaning: Do the hottest and coolest spots in a perfectly 
insulated region necessarily move toward the boundary? We proceed by briefly explaining the 
applied significance of the answer to the question, review the known results, and write down the 
mathematical formulation of the problem, the later accessible to anyone with an advanced calculus 
background. We then consider numerical simulations of the problem, using the PDE-Toolbox of the 
commercial software Matlab. The goal is by looking at the geometry of the numerics to formulate 
geometric results, that can be proven by means of elementary Euclidean geometry. We also show 
how basic calculus tools and sophisticated but intuitive mathematical ideas, can be applied to 
derive a new understanding of the behavior of the temperature profile for large times, for the case 
of particular type of domains. 

2. Background 

Some basic geometric understanding of eigenvalues was already known to the ancient Greeks who 
discovered the inverse relationship between the length of a string and its pitch. A string which 
is half as long as another is said to produce the same note, only one octave higher and vibrating 
twice as fast. The physical study of vibrating strings was carried out predominately by Galileo, 
Bernoulli, Euler and many others more than two centuries ago. The study of two-dimensional 
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eigenvalue problems is much more complex, and continues to the present day for even simple 
sounding problems. In 1787 Ernst Chladni experimented with patterns formed by vibrations of 
plates, impressing Napoleon enough to offer a. prize for a mathematical theory explaining the 
Chladni's experiments, [8]. This prize was ultimately claimed by a French mathematician, Sophie 
Germain in 1816. Two-dimensional eigenvalue problems are at the heart of problems in wave 
propagation, heat conduction and electromagnetism. H. Weyl obtained various formulas relating 
the set of eigenvalues or fundamental frequencies to geometric quantities such as area, leading Mark 
Kac to ask in 1966 whether the geometry of a domain could be obtained based on its eigenvalues. 
The popularization of this idea is whether one can hear the shape of a drum. This question was 
answered in 1994 by Carolyn Gordon and coauthors with the discovery of two domains which 
could be cut and pasted onto one another so as to preserve the tones but not the geometry, [2]. 
Interestingly, it is still unknown if convex domains are determined by their sound. 

A very recent problem of two-dimensional geometry is the so-called Hot-Spots conjecture, [7]. 
The problem asks whether the hottest and coolest spot in a perfectly insulated region necessarily 
tend toward the boundary. If one discusses arbitrary regions, it is known that the Hot Spots 
conjecture is false [1], but there is intense continuing work for the case of regions without holes. 
The question can be translated in terms of maximum and minimum values of eigenfunctions of the 
associated Neumann eigenvalue problem for the Laplace operator. 

We look at the geometry of level sets for some eigenfunctions of the Laplacian in a region 
which is almost perfectly insulating. This case known as Robin eigenvalue problems serves as an 
intermediary between the Neumann-perfectly insulated and the Dirichlet-perfectly conducting. We 
study the problem numerically, and give an example of how the geometry of the numerics and deep 
mathematical results lead to a simple geometric conjecture, which can be easily shown in Euclidean 
geometry. 

We also present a more advanced new analytical result which gives an insight on the long term 
behavior of the temperature profile, where use of a calculus· knowledge and intuitive ideas should 
result in an appreciation, from the part of the audience, of the. power of mathematical tools in 
understanding nature's behavior. 

3. Hot Spot Conjecture 

The temperature flow, u(x, t), in an insulated, bounded, two-dimensional medium, denoted by n, 
in suitable rescaled coordinates, verifies the following initial-boundary value problem: 

{ 
c:; (x, t) = ~u, 

~(x,t) = 0, 

u(x,O) = f(x) 

in n, t > ° 
on an, t > ° 
in n, 

(1) 

where x = (Xt,X2), ~u == 882~ + 882~ is the Lapla&e operator, u verifies the Neumann boundary 
Xl X2 -

condition for any t > ° (alias it has zero normal derivative on the boundary), and f(x) is the initial 
temperature profile. 

The long term asymptotic behavior (the so-called steady-state) of u tends to a constant, namely 

u(x, 00) = 1~ll f(x) dx = Cave, 
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which can be related to the first eigenvalue of the Neumann eigenvalue problem for the Laplace 
operator, i.e. the smallest I-' for which (2) below has a non-zero solution: 

{ 
-6.4>(x) = I-' 4>(x) , 

~(x) = 0, 

in 0 

on ao. (2) 

In fact, one can show that the first eigenvalue is 1-'1 = 0, and that the corresponding eigenfunction 
is a constant, say 4>1 = Cave· 

The next leading contribution to 'II. for t large comes from a suitable linear combination of 
linearly independent eigenfunctions, corresponding to the second eigenvalue 1-'2 i.e. solutions of (2), 
with the smallest I-' == 1-'2 > 1-'1 = 0, that lis the solutions of the freely vibrating membrane problem. 
As a consequence, for large t the extreme values of 'II. are roughly achieved at the same locations of 
the extreme values of the mentioned linear combination. 

We run a numerical simulation of (1), for the initial heat distribution shown in Figure 1. Figure 
2. shows the level sets of'll. for large times; since the domain chosen has only one linearly independent 
eigenfunction, 4>2, the level sets in Figure 2. roughly coincide with the ones of 4>2' 
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Figure 1: An initial heat distribution and its level sets 

The statement of the Hot Spot Conjecture, which tries to answer the question of where the 
hottest and coolest spot for large times are located, in terms of the second eigenfunctions of (2) 
takes the following form: 

Hot Spots Conjecture: If 4>2 is an eigenfunction for (2) corresponding to 1-'2, then 

i. e. the maximum and minimum values of 4>2 occur on the boundary. 

The conjecture was shown to be false in general for arbitrary regions by Burdzy and Werner in 
[1]. On the other hand, a major interest in physics surrounds the still open question on whether 
the conjecture is true for domains without holes. 

From an application point of view, it is also of interest to know how fast the solution approaches 
the constant temperature steady-state profile. The rate is given by an exponential decay of the 
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Figure 2: Level sets of u for t » 0, for the initial heat distribution in Figure 1. 

form e-J-'2 t . Estimates of 1-'2 are thusof interest, and much geometric work has been done in this 
direction by e.g. Payne [4], Sperb [6] etc. 

4. Robin Eigenfunctions and High School Geometry 

In dealing geometrically with the Hot Spots conjecture, one of the difficulties arises from the absence 
of levels sets for the first eigenfunction, which we recall is a constant: 4>1(X) = Cave. This is the 
case, because, as the first eigenfunction is· orthogonal to the second eigenfunctions, by looking to 
the level sets of it one gains an insight on the level sets of the second eigenfunctions. 

To overcome this difficulty, we consider the so-called Robin problem, which for a small can be 
interpreted as a perturbation of the Neumann problem (1): 

{ 
8u(xt)_~u at ' - , 

~~(x, t) + au(x, t) = 0, 

u(x, 0) = f(x) . 

in n, t > 0 

on an, t > 0 

in n 
(3) 

To consider this perturbation is also reasonable from the physical point of view as perfect 
insulators in practice do not exist. 

In contrast to the situation of a perfect insulator, the solution of the Robin problem (3) slowly 
tends to zero, as heat escapes through the boundary via the au term, and tends to look like 
e-'xl(Q)t'lj11(X). Here, 'Ij11 > 0 is the first eigenfunction, of the Robin eigenvalue problem again for 
the Laplacian: 

{ 
-~'Ij1 = ),(a) 'Ij1, 

~(x) + a'lj1(x) = 0, 

in n 
on an, (4) 

We denote by ),1(a) > 0 the smallest· eigenvalue. Note that ),l(a) is no longer zero as with the 
Neumann case, and 'Ij11 is not constant, therefore, the hottest and coolest spots of u solution of (3) 
will tend to the ones of 'Ij11. 
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We want to point out that as heat escapes from the boundary, in the Robin boundary condition 
case the coolest points are on the boundary, but the hottest are not. They will be in general in 
the inside of the domain. So, why is it of interest to study the Robin Boundary condition in this 
context? The reason lies on the fact that for a fixed domain 0, the second eigenfunctions of the 
Robin problem (4) are very similar to the second eigenfunctions of the Neumann problem (2); hence, 
by looking at the level sets of 1/J1, we gain an idea of the level sets of the second eigenfunctions of 
(2). 

The hottest spot for a triangular region, computed by numerically solving (4) for .\(0) = '\1(0), 
and plotting the levels sets of 1/J1, can be seen as the center of the circles in Figure 3. 
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Figure 3: The hottest spot is the center of the shown circles 

~ 
We considered similar numerical simulations for various polygonal regions both convex or non

convex, some results are showh in Figure 4. 
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Figure 4: The hottest spot is the center of the oval regions 

It turns out (see Sperb [6]) that while .\1(0) -+ 0 as 0 -+ 0 (which is expected as the first 
eigenvalue of the Neumann problem is zero), the ratio of the first eigenvalue to the parameter 0 

tends to a geometric quantity 
lim .\1(0) = L, 
0-+0 0 A 

where L is the arclength of 0 and A its area. 
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By looking at the level sets of the long time behavior for various different domains, we notice 
that the level sets are circular, precisely when the region n is a polygon circumscribing a circle. 
Since the inscribed c;ircle is a level set for 'l/Jl which touches the boundary, the first eigenvalue of 
(4) for this circle, should be very close to 'l/Jl. 
. From this remark and the quoted result of Sperb, one is lead to argue that the limiting ratios 

>'l~a) are the same for the polygon, and the circle it circumscribes. But for a circle of radius 

1/ K it holds lilIla-to >'l~a) = 2K, and these observations can be summarized in a simple geometric 
conjecture which can be verified using high-school level geometry. 

A Geometric Result: If P is a polygon which circumscribes a circle C with radius 1/ K, 
then the perimeter L of P divided by the area A of P is twice the curvature, that is L / A = 2K or 
L=2KA. 

Figure 5: Inscribed circle 

A straightforward proof of the above can be given as follows. One first divides the poly
gon into quadrilaterals such as ABCD in Figure 5., from which the student can see that it is 
enough to show that length(AB)+length(AD) = 2 K Area (ABCD). Since length(AB)=length(AD), 
one needs only to derive length(AB)= K Area(ABCD). This can be done, if one observes that 
Area(ABCD)=Area(~ABC) + Area(~ACD)= 2 Area(~ABC) =2 ~ length(AB) length(BC), as 
LABC is a right angle. But, length(BC)=l/ K, and we have Area(ABCD)=2 1/2Iength(AB) 1/ K; 
which is the desired result. 

5. A More Intricate Study of the Decay for n Convex: 

The Robin problem (3) is characterized by heat escaping, and the first order term tends to behave 
approximately as e->'l(a)t'l/Jl(X). A measure of how good is this approximation is given by the 
so-called gap between the first and the second eigenvalue, .A2(a) - .Al(a). 

For convex regions, with first eigenfunction having convex level sets one can find a lower bound 
on how fast the heat distribution tends to e->'l(a)t'l/Jl(X), by a mix of basic calculus tools and 
instructive intuitive ideas. 

A Calculus Result: Ifn is a convex region, whose first Robin eigenfunction 'l/Jl(X) has convex 
level sets then .A2(a) - .Al(a) ~ ~, where d is the diameter of n. 

We follow an argument presented in [5]. Using calculus, the eigenvalue gap .A2(a) - .Al(a) can 
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d 

Figure 6: Region 11 - Subdivision 01 11 

be represented as a minimum (of an energy): 

. In IVI12'I/J~ 
A2(a)-Al(a)=mm Inj2'I/J~ , 

where f is any differential function on 11 with In f 'l/JI = 0, and the minimum is achieved for f = ~~. 
One can easily visualize the fact that for every angle 0 ~ 0 ~ 271" or equivalently for every 

direction, there is a unique line lo parallel to that direction which divides 11 into regions of equal 
area, one to the left of lo, one to the right, say £0 and Ro, respectively. Since lo = l8+7I"' if 

{ f 'l/JI > 0, then { f 'I/J~ = { f 'l/JI < o. lL9 lL9+~ l~ 
By continuity, there must be 0,10, £0, Ro, with { f 'I/J~ = O. Repeating the process, we can lL9 

further divide the regions (see Figure 6., where 11 is divided in 8 pieces of equal area, each piece 

being convex and with 1 f 'I/J~ = 0.) 
ni ' 

Invoking the Mean Value Theorem, we have that in the limit our result is proven if we show 

that fz If'12'I/J~ ~ ~ fz f2'I/J~, where I is an arbitrary line segment in 11, and 1 1 'I/J~ = o. Again using 

calculus, one can characterize the above as an eigenvalue problem, by showing that 

. fz 1f'12'I/J~ 
f.t'I/J1 = mm f 12.,,2 ' fz /'I/J?=O Jl '1'1 

is the smallest eigenvalue of the one-dimensional Neumann eigenvalue problem 

{ 
['I/J~v]' + f.t'I/J~v = 0, 

v' = 0, 

in l 

at the endpoints of I. 
(5) 

The standard change of variable w = v' 'l/Jl, lead to the new problem 

" [1 ('l/Jt)" 3 [('I/J~),F] 
w + "2 'I/J~ - 4 ('l/Jt)2 W + f.tw = 0, 

with w = 0 at the -endpoints of I. 
Then integration by parts, using the fact the 'l/Jl is a concave function on l, gives the result. 
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