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Abstract 

A well-known method for generating computer art is based on the paradigm of user-guided 
evolution, a method whereby "artists" interactively search through populations of images in 
order to select, and subsequently breed, those images which show aesthetic promise. This 
can be a time consuming endeavor, lacking well-defined principles for controlling evolution and 
for obtaining images with desired aesthetic characteristics. One way to improve upon this 
situation is to develop computational criteria for selecting images that conform to user specified 
aesthetics. We consider a non-interactive evolutionary method that contributes to this field of 
computational aesthetics by: (1) color segmenting the digital images that we breed so that their 
color organization can be used to influence aesthetic decision making, and (2) investigating 
mathematical models for assigning aesthetic fitness to images based on geometric quantities 
obtained following color segmentation. We provide examples of the aesthetic imagery we obtain. 

1. Introduction 

Originally conceived of as a tool for studying the concept of "evolvability," Richard Dawkins' 
interactive simulated evolution program, Biomorphs, bred populations of drawing programs to serve 
as organisms that could assume a visual form [4]. The key idea underlying Dawkins' evolutionary 
simulation was "user-guided fitness," which meant that the survivability of a drawing program 
was determined by the user. Subsequently, Karl Sims developed an interactive simulated evolution 
program for image generation which functioned as an art medium with user-guided fitness now 
taking on the role of user-guided aesthetics [16]. Sims freed image generation from procedurally 
based drawing routines by encoding color images as expression trees. 

Many successors followed in Sims' footsteps. Image generation systems that were directly in
spired by Sims' expression trees include those of Rooke (as described in [10, 19]), the author [9], 
Unemi [18], Ibrahim [11], and Mount (as described in [20]). Other well-known image generation sys
tems adopting fitness by aesthetics, but using different image encodings, include Latham's Mutator 
[17] which uses bit string encodings, or Lund's Artificial Painter [12] and Machado and Cardoso's 
NEvAr (Neural Evolutionary Art) system [13] both of which use neural net encodings. A definitive 
survey is well beyond the scope of this paper. 

The image generation systems listed above all require a user - the artist - to inspect image 
populations after each breeding cycle for the purpose of culling the least desirable images, and 
selecting the most desirable images to breed and pass their genes on to the next generation. In 
this way, over time, images acquire aesthetic characteristics. It can be a laborious process. The 
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size of the image populations that can be used, the resolution at which images can be displayed to 
the user, and the time that can be allotted for converting the encoding, or genome, into an image, 
or phenome, are prohibitive. The paradigm itself has been criticized for its inability to control the 
evolutionary process and has been maligned for its inability to instill aesthetic intent [2]. For such 
reasons, research has begun into automating the task of selecting images to be bred for the next 
generation, thereby introducing computational aesthetics as the paradigm for creating aesthetic 
images. We survey previous work. 

Baluja et al examined the possibility of training a neural net to make decisions about which 
images to breed [1]. Their results were inconclusive, with difficulties stemming from the inability of 
their neural nets to "digest" the aesthetic content of the imagery their Sims' style image generation 
system produced. Similarly, Rooke (unpublished) achieved only limited success using a compu
tational aesthetics approach where he attempted to evolve populations of "art critics" to assist 
in breeding image populations. Rooke's art critics assigned aesthetic fitness to his images largely 
on the basis of various statistics they were able to gather from them. The author investigated 
assigning aesthetic fitness to images based on a measure of their "complexity" as determined by 
convolution filtering [7]. A salient feature of this work was that computational aesthetic measures 
of fitness changed over time due to the fact that the program was co-evolutionary, with images (host 
expression trees) evolving in competition with their critics (parasitic digital filters). Machado and 
Cardoso (unpublished) have also investigated assigning aesthetic fitness on the basis of complexity 
to images generated by their NEvAr system [14]. 

In most interactive evolutionary systems that we are aware of, and certainly in all of our own, 
image color is extrinsic rather intrinsic. This means that when images are encoded numerically 
via pixels defined using one value, images really have no color at all. Image coloring, even if it is 
simply gray scale, must be imposed by mappings from the intervals pixel values lie in to colors -
a method known as pseudo-coloring or false coloring. From the point of view of assigning aesthetic 
fitness to images, the use of these pixel values seems undesirable unless one is content to consider 
only monochromatic images. Here we consider a method, albeit a somewhat sophisticated color 
segmentation method, for binding the pseudocolor mapping to .the fitness evaluation step. Color 
segmentation allows us to abstract geometry - area, perimeter, and adjacency - from images, 
which can then be used for developing computational models of aesthetic fitness. We will consider 
several such models. 

This paper is organized as follows. In section two we review the rudimentary features of the 
evolutionary system we use for generating images. In section three we give a brief overview (full 
details will appear elsewhere) of our color segmentation algorithm. In section four we consider 
various ways to incorporate the geometric data we obtain from color segmentation into measures of 
aesthetic fitness so that they will support predictable conclusions about image aesthetics. In section 
five we present some of the images we obtained. In section six we offer our conclusions. 

2. Images from Expression Trees 

An expression is a rooted tree. Internal nodes of the tree contain functions, the primitives, 
while external nodes, the leaves, contain either variables (Vo or VI) or constants. By requiring that 
all inputs and outputs of primitives be clamped to the unit interval, we are able to associate a 
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resolution dependent digital image to an expression by deriving values for Vo and VI from pixel 
coordinates and then evaluating the expression according to the rule of composition of functions. 
A simple example will help clarify what we mean. For the expression written in prefix notation 
as F(Vo, VI) = max(mul(0.758, Vo), sqrt(VI )), we would associate the 32 x 32 pixel image whose 
matrix is (Pi,j), by setting Pi,j = F(i/32,j/32), for 0::; i,j < 32. The complete list of primitives we 
use, including their definitions and resulting gray-scale images may be found in [8]. Our primitives 
have symbolic equivalents: CO, Cl, ... , C999 for constants, UO, Ul, ... U4 for unary functions, and 
BO, Bl, ... B14 for binary functions. Using these symbolic equivalents and adopting postfix notation 
allows us to rewrite the example above as Vl U2 VO C758 BO B6. The manner in which we breed 
postfix expressions using recombination and mutation operators is described in [8]. 

In [8] we generated gray-scale images by mapping pixel values lying in the interval [0,1) to an 
8-bit gray scale by mapping those pixel values lying in the interval [i/255, (i + 1)/255) to the RGB 
color (i/255, i/255, i/255). Here too we invoke a color mapping, but one which will we later bind 
to image fitness. Our color mapping is into HSV color space, a space where each color's saturation 
and value components lie in the interval [0, 1], but each color's hue component is defined circularly 
on the interval [0,6]. Hue classifies a color according to where it is situated on the perimeter of the 
HSV color wheel. Our mapping takes pixel values lying in the interval [0,1) to 450 different HSV 
colors. These colors comprise fifty hues, with nine shades for each hue. We chose vivid shades by 
first uniformly spacing hues, and then uniformly spacing each hue's value and saturation starting 
from 0.7. 

3. Biased Color Image Segmentation 

In this section we present our method for merging the pixels of an image on the basis of their 
HSV color into a pre-specified number of regions with averaged HSV color. The goal behind this 
color segmentation is to organize an image into regions of similar hue and value in much the same 
way that painters are taught to loosely organize their compositions by hue and value. Since our 
computer generated images are abstract, an example of what we are trying to achieve is most easily 
demonstrated by examining how our algorithm is able to color segment a familiar image such as Van 
Gogh's "Starry Night" (See Figure 1). The compositional nature of this Van Gogh helps explain 
why we use region merging instead of color thresholding to segment images. 

To begin our color segmentation, we use each pixel to create a region. These regions have area 
one, perimeter four, and average HSV color equal to the HSV color of their underlying pixels. To 
achieve our goal we must decide in what order we will merge simply-connected adjacent regions -
regions sharing a boundary edge - to form new regions. We determine this by assigning priorities 
to boundary edges. Merge events are then triggered by the boundary edge with the lowest priority. 
As merges occur, edge priorities change, so segmentation becomes a dynamic process. When a 
merge occurs, the merged region's HSV color is the area weighted average of the HSV colors of 
the two regions being merged. This averaging step requires special care because of the way hue is 
defined. 

Edge priority is determined as follows. Let b.h , b.s , and b.v be the magnitudes of the differences 
in average hue, saturation, and value between two regions across a boundary edge e, with the 
understanding that the difference in hue takes into account its circularly defined scale. We define 
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the edge priority p( e) to be 

We always set kh = 1.0, and constrain the remaining coefficients of p(e) to lie in the interval [0,3J. 
Although it is beyond the scope of this paper, we should remark that the coefficients we use for 
p(e) actually evolve over the course of our aesthetic image generation. One reason we weight the 
difference in hue by terms involving the differences in value and saturation is because we discovered 
that by introducing such biases we could tune our priority function on a per image basis so that 
it could yield acceptable results for a wide variety of photorealistic and non-photorealistic images. 
Because our image segmentation is slow compared with other color segmentation algorithms (see 
for example [3] or [5]) we must re-emphasize that region merging allows to control precisely the 
number of simply-connected regions we will obtain from segmentation. 

Figure 1: A 128 x 128 pixel digital version of Van Gogh's "Starry Night" is color segmented into 
twenty-five regions using our region merging algorithm. 

4. Computational Aesthetic Metrics 

We can now describe the framework underlying our generation of images on the basis of com
putational aesthetics. To each expression tree we associate a low-resolution 32 x 32 pixel HSV 
colored image and a high-resolution 200 x 200 pixel HSV colored image. We color segment the low
resolution version into an image with n = 25 merged regions. Segmentation organizes the image in 
a way that, hopefully, bears some resemblance to how a user might organize it on the basis of color 
alone. Figure 2 shows the high-resolution, low-resolution, and color segmented versions of images 
obtained from the postfix expression 

C209 C308 Vi Vl B4 VO VO B7 B12 U2 U4 C209 B13 Vl Vl B3 C80 VO VO B8 C168 B12 
Ul Vl B13 C892 Bl0 Vl Bl B2 B14 C759 B9 Vl Vl B3 U3 B12 U4 U3 VO B12 B8 Bl B13 

color segmented using kh,v = 2.23, kh,v,8 = 0.94, kh,s = 1.22, kv = 2.89, and ks = 2.79. 

Following image segmentation, we attempt to discover whether or not an image is aesthetically 
promising. In order to do so, we must try to make use of the color, area, perimeter, and adjacency 
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Figure 2: The high-resolution 200 x 200 image obtained from an expression tree, together with its 
low-resolution 32 x 32 counterpart and its segmentation. 

information provided by the segmented version. It appears to be a difficult AI problem to decide 
how to make further use of the color content- we know of no rules to apply - so we focus 
instead on the underlying geometry. We want computational fitness measures calculated from the 
geometry to give rise to predictable imagery, allowing us to breed the aesthetic characteristics we 
want. Assume segmentation of image 1 yields regions Rl,R2, ... ,Rn having areas al,a2, ... ,an 
and perimeters PbP2, ... ,Pn. Assume, further, that these regions are sorted so that their areas 
are in descending order al·~ a2 ~ .... For completeness, we remark that since regions may have 
genus greater than zero, a region's "perimeter" actually refers to sum of the lengths of its boundary 
edges. We let f(1) denote the aesthetic fitness of image 1. 

EXAMPLE 1. Consider !I (1) = al. In this case we would predict a maximally fit aesthetic image 
would consist of one large region bounding, hence possibly enclosing, n - 1 regions of area one. 
This description only applies to the segmented version of the associated low-resolution image. The 
associated high-resolution image should have this general appearance, but should be augmented 
with better detail. 

EXAMPLE 2. Consider 12(1) = L:Pi. We are maximizing the sum of the lengths of the perime
ters of the regions. Conceivably, this could result in a twisty, interlocking composition which would 
be very desirable indeed. Surprisingly, we encounter a stumbling block. Image generation, now 
reduced to an optimization problem, falls into the trap of finding a local maximum from which it is 
unable to "escape" during the course of its search for an aesthetically superior global maximum. In 
our tests, images consisting almost entirely of perfectly horizontal or vertical bands were the local 
maxima from which image breeding could not escape during the course of evolution. One way to 
try to avoid such uninteresting local maxima is to try to introduce more tension into the fitness 
measure. 

EXAMPLE 3. Consider h(1) = 2al + 3a2 + L:Pi, which rewards images that have two large 
regions and whose perimeter sum is as large as possible. Tension arises here by asking larger 
regions to sacrifice area in favor of the perimeter sum. This fitness measure, and similar ones (e.g., 
f4(1) = 2al + 3a2 + 4aa + L:Pil which incorporates a third largest area term) produced some of 
our best images. We also obtained favorable results by using only "tails" of the perimeter sum. 
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We now consider a third geometric quantity associated with our segmented images. Let A be 
the total number of adjacencies between regions. Formally, if (Oi,j) is the adjacency matrix whose 
Kronecker delta is one when region Ri is adjacent to region Rj and zero otherwise, then A is the 
sum of the off-diagonal entries divided by two. By measuring contact, A might help measure how 
maze-like the image is. 

EXAMPLE 4. Consider fs(1) = A. Using this measure of aesthetic fitness we obtained several 
images consisting of parallel undulating curves or nested rectangles. The refinement 16(1) = 5A+al, 
with which we attempted to "grow" embedded regions into threads, instead clumped all those 
regions into a ball. By contrast, the metric 17(1) = lOA + PI produced marvelous segmented 
images, but the non-segmented versions were rather incoherent. The metric 18(1) = 5A + PI + P2 
fared somewhat better in this regard. 

Figure 3: Top left: aesthetic fitness favoring the largest area and a perimeter sum. Top right: 
aesthetic fitness favoring the two largest areas and a perimeter sum. Bottom left: aesthetic fitness 
favoring the three largest areas and a perimeter sum. Bottom right: aesthetic fitness favoring the 
perimeter of the largest area and the number of adjacencies. 

5. Images Obtained from Computational Aesthetics 

In this section we present images culled from the archives of the aesthetic imagery we obtained 
during the course.of our research on computational aesthetics. Space limitations prohibit showing 
the segmented versions that were used to assign their fitness. Figure 3 shows three images that 
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were obtained using aesthetic fitness measures of the type described in Example 3 and one image 
obtained using the adjacencies method of Example 4. 

6. Conclusions 

It is a truism that evolutionary optimization methods can only be successful if the proper genetic 
building blocks and genetic recombination operators are in place. In other words, evolutionary 
optimization only makes sense if there is the potential for organisms to be bred to solve the problem! 
Our computational aesthetic framework appears sound, and did produce many interesting images, 
but by testing the theory using images generated from expression trees incorporating our unusual 
set of building blocks, we may not have availed ourselves of the best choice for image encodings. It 
would be interesting to apply oUr methods to a system where image encodings were stroke based 
or symmetry based. This should provide better linkage between segmented low-resolution images 
and their high-resolution phenotypes. The imperative image design language used by Maeda [15] 
or the functional image design language used by Elliot [6] might sever as good candidates. 

Figure 4: A promising image obtained at generation thirty leads to an evolutionary dead end by 
generation one hundred and sixty as a perimeter sum term used in calculating aesthetic fitness 
seizes controL 

The problem of deciding how to construct aesthetic fitness measures that yield local maxima that 
are not "degenerate" images can be a vexing one. Figure 4 illustrates how this problem sometimes 
develops over time. After thirty generations evolution found an aesthetically promising maximally 
fit image, but by generation one hundred and sixty the maximally fit image was degenerate and 
evolution reached a dead end for this lineage. This suggests that our methods might prove best 
suited for use with large image populations evoIved for relatively short periods of time. 
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