Theory of Design - Abstract

Michael Leyton
Bridges: Mathematical Connections in Art, Music, and Science (2002)
Pages 313–313


This talk gives an introduction to my book, A Generative Theory of Shape (Springer-Verlag, 550pages). The purpose of the book is to develop a generative theory of shape that has two properties regarded as fundamental to intelligence - maximizing transfer of structure and maximizing recoverability of the generative operations. These two properties are particularly important in the representation of complex shape - which is the main concern of the book. The primary goal of the theory is the conversion of complexity into understandability. For this purpose, a mathematical theory is presented of how understandability is created in a structure. This is achieved by developing a group-theoretic approach to formalizing transfer and recoverability. To handle complex shape, a new class of groups is developed, called unfolding groups. These unfold structure from a maximally collapsed version of that structure. A principal aspect of the theory is that it develops a group-theoretic formalization of major object-oriented concepts such as inheritance. The result is an object-oriented theory of geometry.