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Abstract 

In 1985 the mathematician H. S. M. Coxeter suggested that one could cover a torus in a regular way 
with 18 copies of the butterfly motif of M. C. Escher's Notebook Drawing Number 70. In this paper, we 
show how 168 copies of that motif can cover a surface of genus 3 - a 3-holed torus. In fact, we cover a 
polyhedron of genus 3 with such butterflies. 

1 Introduction 

The goal of this paper is to show how to cover a polyhedron of genus 3 with a pattern of 168 butterflies 
like those in M. C. Escher's Notebook Drawing Number 70. The polyhedron is shown below in Figure 1 
and described in Section 2. We explain how to cover the polyhedron with the butterfly pattern in Section 3. 

Figure 1: The polyhedron, consisting of 56 triangles. 

Then in Section 4, we discuss connections between this decorated polyhedron, regular maps on a surface, 
the "realization" problem for polyhedra, and hyperbolic patterns. In the last section, we indicate directions 
for future work. 
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2 The Polyhedron 

The polyhedron, shown in Figure 1, consists of 56 triangles, seven of which meet at each of 24 vertices. 
One simplified description of it is as a "thickened" skeleton of a tetrahedron, and thus it has genus 3. A 
better description is that it consists of two concentric, slightly twisted icosahedra with four holes connecting 
the inner to the outer icosahedron. If one starts with "aligned" concentric regular icosahedra and removes 
a corresponding face from each one, the hole that is left has the shape of a truncated triangular pyramid, 
which has trapezoidal lateral sides. To obtain a hole with triangular sides, the concentric icosahedra must be 
"twisted" with respect to each other. Vertices for an icosahedron can be chosen on the coordinate planes in 
two ways as follows: (1) as (O, ±T, ±1), (±1, 0, ±T), and (±T, ±1, 0), or as (2) (O, ±1, ±T), (±1, ±T, 0), 
and (±T, 0, ±1), where T is the golden section (see page 163 of [1]). So we if we choose one set of 
vertices for the inner icosahedron and multiply the other set of coordinates by a factor of 2 for the outer 
icosahedron, we will obtain icosahedra that are twisted with respect to each other. However, if we remove 
a corresponding face from each one, the triangular sides of the "connecting holes" are not isosceles. To 
obtain isosceles triangles, we use the following (integer) coordinates for the icosahedra instead: for the 
inner icosahedron, we use (O, ±2, ±1) (±1, 0, ±2), and (±2, ±1, 0), and for the outer icosahedron, we use 
(O, ±2, ±4), (±2, ±4, 0), (±4, 0, ±2). The resulting icosahedra have 8 equilateral triangles and 12 isosceles 
triangles each, and the equilateral triangles are in corresponding positions. Now, if corresponding equilateral 
triangles are removed from the inner and outer icosahedra, the connecting hole has the shape of a non-regular 
antiprism with equilateral triangular bases and isosceles triangles as sides. 

The final polyhedron, shown in Figure 1, is formed by removing four corresponding equilateral triangles 
from the inner and outer icosahedra, and connecting the resulting holes with a "cycle" of six isosceles 
triangles each. The four equilateral triangles are chosen alternately from the eight of each icosahedron, 
so that none share vertices. To sum up, the resulting polyhedron is made up of four large and four small 
equilateral triangles, and 48 isosceles triangles (12 each on the inner and outer icosahedra, and 24 = 4x6 
to form the connecting holes). Figures 2 and 3 show nets that form the inner and outer icosahedra - four 
copies of each net are required to make the polyhedron of Figure 1. The central triangles of each net are 

Figure 2: The net for the inner icosahedron. Figure 3: The net for the outer icosahedron. 
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equilateral; the outermost triangles of each net form the connecting holes. The polyhedron of Figure 1 has a 
slight twist to it, and so its symmetry group is the tetrahedral group (of rotation symmetries) and not the full 
group of symmetries of the regular tetrahedron. We can obtain a mirror image of our polyhedron (with the 
opposite twist) by interchanging the x and y coordinates that we used above. Thus, our polyhedron comes 
in two enantiomorphous forms. 

To construct a model of the polyhedron, make four copies each of the nets in Figures 2 and 3 (they are 
the right size relative to each other) and put them together (you might want to use the "zoom" feature of the 
photocopier to get larger nets). Figures 5 and 6 show larger nets for the same polyhedron with the butter:O.y 
pattern on it. In Figure 2 the inner edges are "valley" folds and the outer edges are ''ridge'' folds; all the 
edges of Figure 3 are ''ridge'' folds. This also applies to Figures 5 and 6 (the edges connect left front wing 
tip points). Tom Gettys has useful suggestions for constructing polyhedra out of paper on his web site [5]. 

3 The Butterfly Pattern 

In 1948, M. C. Escher created his Notebook Drawing Number 70, a pattern ofbutter:O.ies based on the regular 
tessellation {3, 6} of the Euclidean plane by equilateral triangles [7, pages 114 and 172]. Each equilateral 
triangle contains three butter:O.ies. We show how to slightly distort these "butter:O.y triangles" to fit into each 
of the triangles of the nets in Figures 2 and 3 - the resulting polyhedron is shown in Figure 4. 

Figure 4: The polyhedron, covered with the butter:O.y pattern. 

In 1977, Schattschneider and Walker [8] used 20 butter:O.y triangles to cover an icosahedron; I used 4 and 
8 butter:O.y triangles to cover a regular tetrahedron and a regular octahedron respectively (unpublished). This 
did not require any distortion of Escher's pattern, since the polyhedra have equilateral triangular faces. At 
Bridges 2001, Carlo Sequin exhibited a sphere covered with 60 butter:O.ies - the icosahedral pattern blown 
up onto its circumscribing sphere. The tetrahedron, octahedron, icosahedron, and sphere all have genus 0 
(Le. they are surfaces with no holes). 

At the 1985 Escher Congress, H. S. M. Coxeter suggested that 18 copies of the butter:O.y motif could be 
used to cover an ordinary I-holed torus (a surface of genus I) in a regular way [2, page 24], however he 
didn't suggest using a polyhedral torus. Coving such a torus with the butter:O.ies would involve distorting 
them in some way since a flat torus cannot be embedded in Euclidean 3-space. Similarly, we must distort the 
butter:O.y triangles to place them on the polyhedron of Section 2. However, since our triangles are isosceles 
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(at worst), it is possible to transform Escher's butterfly triangles to our triangles by using only (differential) 
scaling transformations. To linearly map an equilateral triangle onto an arbitrary triangle also requires the 
use of a shearing transformation. Each of the isosceles triangles in Figures 2 and 3 except the three outermost 
ones of Figure 3 have lateral-side to base ratios of ..j6 /2 ~ 1.225. The three outermost triangles of Figure 3 
have half that ratio, ..j6 /4. So except for these outermost triangles, there is not much distortion required to 
place the butterfly pattern on the isosceles triangles, and no shearing is required. 

Before applying the scaling transformations, it was necessary to obtain only the parts of the butterflies 
contained within one of Escher's equilateral triangles. This was done by using the computer graphics tech
nique of clipping. This process guaranteed that the butterfly outlines would match up along the edges of the 
polyhedron. Since there are (parts ot) three complete butterflies in each triangle, there are 3 x 56 = 168 
butterflies on the polyhedron. The resulting nets (with tabs) are shown in Figures 5 and 6, and can be used 
to construct the patterned polyhedron shown in Figure 4. Note that the butterflies in the center of the inner 
net should be facing inward toward the center of the polyhedron (the origin), since that is the direction of 
the polygon's exterior at that point. If these nets are used, the resulting polyhedron will be about 6 inches in 
diameter (the nets can be blown up to obtain a larger polyhedron). 

Figure 5: The net for the inner icosahedron pattern. 

It is possible to color the butterflies with 8 colors in such a way that the 12 rotation symmetries of the 
polyhedron are also "color symmetries" of the pattern - that is, each rotation exactly permutes the colors 
of the butterflies. Thus there will be 21 butterflies of each color, as shown in Figure 4. 
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Figure 6: The net for the outer icosahedron pattern. 
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4 Connections to Regular Maps and Hyperbolic Geometry 

Informally, a map is a tessellation of a finite surface into a finite number of faces (the "countries"), edges 
(borders of countries), and vertices (points where three or more borders meet). We use {p, qj g} to denote a 
quasi-regular map on a surface of genus 9 consisting of p-sided faces that always meet q at a vertex. This is 
just a combinatorial condition, which is in contrast to the use of the SchHi.fli symbol {p, q} to specify regular 
tessellations in which the faces are (metrically) regular p-sided polygons. This concept is weaker than the 
term "regular map" as used by others [9], [11], and [12], where it is also required that the automorphism 
group be transitive on the vertices, edges, and faces. 

In this paper, we will only be concerned with surfaces that can be embedded in Euclidean 3-space 
without self-intersections, and are therefore orientable. For such a surface, the genus 9 is the number of 
holes it has. For 9 ~ 1, a surface of genus 9 can be formed from a 4g-sided polygon by labeling the edges 
-+ -+ +- +- -+ -+ +- +- -+ -+ +- +- d 'd 'fyin din ed rdi th . Ub Vb Ub Vb U2, V2, U2, V2, ••• , Ug , Vg , Ug , Vg an 1 enti g correspon g ges acco ng to err arrows; 
the resulting surface is a g-holed torus. In fact every orientable surface is a sphere (genus 0) or such a torus 
[6, page 10]. The universal covering surface of the usual I-holed torus is the Euclidean plane [1, page 381] 
(the surface of genus 0, the sphere, is its own universal covering surface); for 9 > 1, the universal covering 
surface is the hyperbolic plane. 

The "realization problem" for the map {p, qj g} is to find a polyhedron of genus 9 in Euclidean 3-space 
(preferably without self-intersections) whose polygonal faces are p-sided polygons meeting q at a vertex, 
and thus realize the map as a polyhedron. The polyhedron of Section 2 is a realization of the map {3, 7j 3}. 
Schulte and Wills gave a different, more combinatorially regular realization of that map in [9], based on 
Klein's quadric x3y + y3z + z3x = 0 and shown in Figure 7 (from [13]). One can see that their polyhedron 

Figure 7: Schulte and Wills' realization of the map {p, qj g}. 

is much more twisted than the one presented in Section 2. Possibly Schulte and Wills also knew of the 
polyhedron of Section 2. It is unusual to have two realizations of a map, since only a finite number of 
regular maps can be realized as polyhedra (it is an open question as to how many [11, page 232]). 

As remarked above, for 9 > 1, the universal covering surface of an orientable surface of genus 9 is the 
hyperbolic plane. In fact a regular hyperbolic 4g-sided polygon, or 4g-gon, of vertex angle 'If' /2g exactly 
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covers such a surface of genus 9 [1, page 382]. So, if there is a map {p, qj g} on that surface, and there is a 
repeating hyperbolic pattern based on the regular tessellation {p, q} (by p-gons meeting q at a vertex), then 
a piece of that pattern within a 4g-gon can be used to cover the surface. Figure 8 shows a hyperbolic pattern 
based on the {3, 7} tessellation, with a triangle ofbutterfiies centered in the bounding circle. Figure 9 shows 
the pattern of Figure 8 overlaid with a regular hyperbolic 12-gon that can be used to exactly cover a surface 
of genus 3. There are 56 "butterfly triangles", and therefore 168 butterflies, contained in the 12-gon. The 

Figure 8: A hyperbolic pattern based on the regular Figure 9: The pattern of Figure 8 overlaid with a 
tessellation {3,7} and Escher's motif of Notebook 12-gon containing 56 butterfly triangles and conse-
Drawing 70, with a centered butterfly triangle. quently 168 butterflies. 

same hyperbolic butterfly pattern is shown in [4, Figure 11], but with a vertex of butterfly triangles at the 
center of the bounding circle. 

If the map {p, qj g} can be realized as a polyhedron, then the polyhedron can be by covered by the 
repeating pattern, with a part of the repeating pattern within a p-gon covering each p-sided polygon of the 
polyhedron. This relationship between repeating hyperbolic patterns and polyhedral realizations of regular 
maps allows us to decorate such polyhedra in a regular way. This is how we came up with the pattern on 
the polyhedron in Figure 4. Aesthetically, it is desirable for the realized polyhedron to be as symmetric as 
possible, that there be as little distortion as possible in transferring the pattern to the polyhedron, and that 
the pattern on the polyhedron be colored symmetrically. 

5 Conclusions and Future Work 

The patterned polyhedron of this paper brings together concepts from four papers given at the 1985 Escher 
Congress in Rome. Both Coxeter [2] and Senechal [10] discussed the covering of 2-dimensional surfaces 
with Escher patterns. Wills exhibited polyhedron that solved realization problem for three regular maps 
[11], and Dunham presented hyperbolic patterns created from Euclidean Escher patterns [3]. 

We have shown how to cover a polyhedron of genus 3 with Escher's butterfly pattern of Notebook 
Drawing 70 by using scaling transformations alone. It would also be interesting to cover Schulte and Wills' 
polyhedron of genus 3 [9] with Escher's pattern which would (perforce) also require shearing transforma
tions. To my knowledge, no one has carried out the covering of a torus with 18 butterflies, as suggested by 



204 Douglas Dunham 

Coxeter [2], let alone a polyhedral torus (which can be constructed from 18 triangles in a twisted form, or 
36 triangles without twists - both {3, 6; I} maps). 

According to Wills [12], there are no known realizations of combinatorially regular polyhedra of genus 
2, so using butterflies to cover such a polyhedron awaits its discovery. However, a surface of genus 2 has 
been covered with Escher's fish pattern of Circle Limit III - the fish backbone lines describing a "semi
regular" map of triangles and quadrilaterals [2, pages 27-30 and the color plate on page 393]. This raises 
the possibility of generalizing Archimedean polyhedra to any genus and covering them with "semi-regular" 
patterns, such as that of Circle Limit III. 

In addition to polyhedra of genus 3, realizations are known for combinatorially regular polyhedra of 
genus 5, 6, 7, 9, 17, 19, and 41 [12]. It would be interesting to cover them with repeating patterns, especially 
the polyhedra of low genus. As with the patterned polyhedron of this paper, it would be desirable for the 
polyhedra to have as many symmetries as possible, and for the symmetries to be color symmetries of the 
pattern. Thus, there are many more avenues to explore in the area of regularly patterned polyhedra. 
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