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Abstract 

This paper is an inquiry into two paradigms of structures: cognitive and 
categorical. This investigation comes from the two special interests of the 
author - mathematics and learning - not just learning mathematics. 
Insight into cognitive and categorical structures is what sometimes sets them 
apart from each other, but more often, it brings them closer together. 

1 "Structure is what structure does." (Van Hiete, [11]) 

Jean Piaget [12], a Swiss biologist and psychologist, developed an influential model of child 
development and learning based on the idea that the developing child constructs increasingly 
sophisticated cognitive structures - moving from a few inborn reflexes such as crying and 
sucking to highly complex mental activities. Cognitive structure is a person's internal mental 
''map,'' a scheme or a network of concepts for understanding· and responding to physical 
experiences within his or her environment. Schema is viewed as a connected collection 
of hierarchical relations, an organized structure of knowledge, into which new knowledge 
and experience might fit. Understanding of something is equated with assimilating it into 
an appropriate schema. The formation of schema is the brain organizing its own activity. 
Piaget's theories of the development of logico-mathematical structures are based on this 
reflective activity of the brain. 

Gestalt theory emphasizes higher-order cognitive processes. The focus is the idea of 
'grouping' - characteristics of stimuli cause us to structure or interpret a visual domain or 
problem in a certain way. The primary factors called the laws of organization, that determine 
grouping, are: proximity, similarity, closure, and simplicity. These factors can be explained· 
in the context of perception and problem-solving. The essence of successful problem-solving 
behavior according to Wertheimer [14] is being able to see the overall structure of the prob­
lem. Directed by what is required by the structure of a situation for a crucial region, one is 
lead to a reasonable prediction, which like the other parts of the structure, calls for verifica­
tion. Two directions are jnvolved: getting a whole consistent picture, and seeing what the 
structure of the whole requires for the parts. 

Piaget gave the following properties of structure: structure has totality, structure is 
achieved by transformations, and structure is auto-regulating. The van Hiele theory [13] 
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puts forward a hierarchy of levels of thinking: visualization, analysis, informal deduction, 
deduction, and rigor.Van Hiele claims parallelism with Ge:;talt psychology by explaining that 
insight exists when a person acts adequately with intention in a new situation . He further· 
de:;cribe:; that' the most important property of structure is that structure can be extended 
because of its composition: "Structure is what structure does." 

The above is a brief overview of a few structure:; and some of their properties, usually 
mentioned in discussions about learning and teaching. 

2 Categorical Structures 

A category K consists of. a collection of objects and a collection of arrows (morphisms) 
satisfying certain conditions. Given arrows 9 : X -+ Y and I : Y -+ Z there is an arrow 
log: X -+ Z which we call the composition of I and g.' For each object X there is an arrow 
idx : X -+ X, called the identity on X. The axioms for a category are: 

Composition is associative: (f 0 g) 0 h = 10 (g 0 h). 
Identity property: Given any I: Y -+ Z, 10 idx = I and idy 0 I = I . 

Category theory provides a consistent treatment of the notion of mathematical structure. 
Almost every known example of a mathematical structure with the appropriate structure 
preserving map yields a category. The classic example of category theory is Set, the category 
with sets as objects, functions as arrows, and the usual composition. What characterizes 
a category is its arrows and not its objects. Thus, the category of topological space:; with 
open maps is a different category than the category of topological spaces with continuous 
maps. 

In all these casa:; the arrows are actually special sort of functions. That need not be the 
case in general: any entity satisfying the conditions given in the definition is a category. For 
example, an ordered set is a category with its elements as objects and one arrow for each X 
:s; Y, but none otherwise. A deductive system such that the entailment relation is reflexive 
and transitive is a category [IO}. 

2.1 Universals 

Category theory unifie:; mathematical structures in a second, and perhaps even more impor­
tant, manner. Once a type of structure has been defined, it becomes essential to determine 
how new structure:; can be constructed out of the given one and how given structure:; can 
be decomposed into more elementary substructure:;. For instance, set theory allows us to 
construct Carte:;ian product. For an example of the second sort, given a finite abelian group, 
it can be decomposed into a product of some of its subgroups. In both cases, it is neca:;sary 
to know how structure:; of a certain kind combine. The nature of these combinations might 
appear to be considerably different when looked at from too close. Category theory reveals 
that many of these constructions are in fact special cases of objects in a category with what 
is called a "universal property". From a categorical point of view, a Cartesian product, a 
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direct product of groups, a product of topological space::;, and a conjunctiml of propositions 
in a deductive system are all instance::; of a categorical concept: the categorical product. 

The universal property of product: Any arrow h : W ~ X x Y from an object W is 
uniquely determined by its composite::; poh and qoh, where p : X X Y ~ X and q : X X Y ~ Y 
are 'projections'. Conversely, given Wand two arrows f : W ~ X and g: W ~ Y there is 
a unique arrow h which makes the corresponding diagram commute, namely h = (f,g). 

Thus, given X and Y, (p, q) is "universal" because any other such pair (f, g) fac­
tors uniquely (via h) through the pair (p, q). This property describe::; the product (X x 
Y,p, q) uniquely (up to a bijection). 

Many propertie::; of mathematical constructions may be represented by universal proper­
ties of diagrams [10]. 

2.2 Functors: Trans-structuring 

Another crucial aspect of category theory is that it allows to see how different kind of 
structures are related to one another. For instance, in algebraic topology, topological spaces 
are related to groups by various means (homology, cohomology, homotopy, K-theory). It was 
precisely in order to clarify how these connections are made that Eilenberg and MacLane 
invented category theory [10]. Indeed, topological spaces With continuous maps constitute 
a category and similarly groups with group homomorphisms. In the very spirit of category 
theory, what should matter here are the arrows between categories. These are given by 
functors and are informally structure pre::;erving maps between categories. 
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Figure 1: Functor F: K ~ C 

A functor from JC to C is a function from class of arrows of K to the class of arrows in 
C pre::;erving identities and composition (see Figure 1): 

If id is. a K-identity, then F(id) is an C-identity. 
F(f 0 g) = F(f) 0 F(g), where 9 E Ham(X, Y) and f E Ham(Y, Z) 

It follows immediately that a functor preserves commutativity of diagrams between cat­
egories. Homology, cohomology, homotopy, K-theory are all example of functors. 
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2.3 One More Bridge: Natural Transformation 

There are in general many functors between two given categories and it becomes natural to 
ask how they are connected. For instance, given a category K, there is always the identity 
functor from K to K which sends every object of K to itself and every arrow of K to itself. 
In particular, there is the identity functor over the category of sets. 

Suppose we have two functors F and G from the category K to the category t:, and an 
arrow / : X -+ Y in K. A natural trons/ormation n from F to G consists of a family of 
arrows, an arrow n(X) : F(X) -+ G(X) for each object X in K, such that n(Y) * F(f) = 

G(f) * n(X) : F(X) -+ G(Y) (the corresponding diagram commutes for every such f). 
An example would be "abelianization", which maps a group H to the abelian group 

H/[H, H]. H F were the fundamental group and G were the first homology group, we could 
say that abelianization is a natural transformation from F to G [10]. 

2.4 Is That All? 

The above notions constitute the elementary concepts of category theory. However it should 
be noted that they are not fundamental notions of category theory. These are arguably the 
notions of limits/ colimits which are, in turn, special cases of what is certainly the cornerstone 
of the theory, the concept of adjoint functors. We will not present the definition here. Adjoint 
functors permeate mathematiCs and this quality of spreading through is certainly one of the 
mystifying facts that category theory reveals about mathematics and probably thinking in 
general. Universality may also be described in terms of adjoint functors expressing the 
objective dialectical equilibrium. 

In this manner, category theory provides means to circumscribe and study what is uni­
versal in mathematics and other scientific disciplines. Also, by identifying logic with the 
study of what is universal, category theory supplies the means to describe such logic, the 
objective logic of the discipline in question [10]. 

3 Cognitive Structures 

Cognitive science is the interdisciplinary study of mind and intelligence, embracing phi­
losophy, psychology, artificial intelligence, neuroscience, linguistics, and anthropology. Its 
intellectual origins are in the mid-1950s when researchers in several fields began to develop 
theories of mind based on complex representations and computational procedures. Its or­
ganizational origins are in the mid-1970s when the Cognitive Science Society was formed 
and the journal Cognitive Science began. Cognitive science is revolutionizing our under­
standing of ourselves by providing new accounts of human. rationality and consciousness, 
perceptions, emotions, and desires. It explicates how structures of different kinds are re­
lated to one another as well as the universal components of a family of structures of a given 
kind. Philosophically, it can be thought of as constituting a theory of concepts. It also gives 
new prospective on some traditional philosophical questions, for instance on the nature of 
reference and truth. 
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Modeling the mind as an information-processing machine is a result of a large body 
of research about computer knowledge. It has led to much psychological and pedagogical 
insight, but has sharply limited ability to predict human behavior and learning nonethe­
less. Cognitive theory describes memory storage and recall structures resembling Piaget's 
schema and describes regular inclusions and revIsions to these structures similar to Piagetian 
assimilation and accommodation [11]. 

Cognitive science raises many interesting methodological questions: What is the nature 
of representation? What role do computational models play in the development of cognitive 
theories? What is the relation among apparently competing accounts of mind involving 
symbolic processing, neural networks, and dynamical systems? 

3.1 Mental Representations 

There is much disagreement about the nature of the representations and computations that 
constitute thinking. Thinking can best be understood in terms of representational structures 
in the mind and computational procedures that operate on those structures. This central 
hypothesis of cognitive science is general enough to encompass the current range of thinking 
in cognitive science, including connectionist theories which model thinking using artificial 
neural networks [11]. Most work in cognitive science assumes that the mind has mental 
representations analogous to computer data structures, and computational procedures sim­
ilar to computational algorithms. The mind contains such mental representations as logical 
propositions, rules, concepts, images, and analogies, and uses mental procedures such as 
deduction, search, matching, rotating, and retrieval. "Connectionists" have proposed novel 
ideas about representation and computation that use neurons and their connections as in­
spirations for data structures, and neuron firing and spreading activation as inspirations for 
algorithms. Cognitive science then works with a complex 3-way analogy of mind, brain, 
and computers. Mind, brain, or computation can each be used to suggest new ideas about 
the other two. Different kinds of computers and programming approaches suggest different 
ways in which the mind might work. Therefore, there is no single computational model of 
mind. The first computers are serial processors, performing one instruction at a time, but 
the brain and some newly developed computers are parallel processors, capable of doing 
many operations at once. 

Philosophy, in particular philosophy of the mind, is part of cognitive science. From a 
naturalistic perspective, philosophy of the mind is closely tied in with theoretical and exper­
imental work in cognitive science. Metaphysical conclusions about the nature of mind are to 
be reached, not by a priori speculation, but by informed reflection on scientific developments 
in fields such as computer science and neuroscience. Similarly, epistemology is not a stand­
alone conceptual exercise, but depends on and benefits from scientific findings concerning 
mental structures and learning procedures. It is an empirical conjecture that human minds 
work by representation and computation. Although this computational-representational ap­
proach to cognitive science has been successful in explaining many aspects of human learn­
ing, critics of cognitive science have offered such challenges as: the emotion challenge, the 
consciousness challenge, the world challenge, the social challenge, the dynamical systems 
challenge, and the mathematics challenge [9]. 
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3.2 Architecture 

A very restricted family of structures that provide the frame within which the cognitive 
processing in the mind take place is called architecture [11]. If the consideration is reStricted 
only to symbolic structures, architecture is closer to structures analyzed in computer science. 
Viewing the world as constituted of systems whose behavior is observed is part of the com­
mon conceptual apparatus of science - a system of given structure producing behavior that 
performs a give~ function in the encompassing system. The' notion of architecture in this 
sense supplies the concept of the system that is required to attain flexible intelligent behavior 
by invoking most of the psychological functions - perception, encoding, retrieval, memory, 
composition and selection of symbolic responses, decision making, motor commands and 
actual motor responses. 

The role of architecture in cognitive science is to ,be the central element in a theory of 
human cognition. A theory of the architecture is a proposal for the total cognitive mecha­
nism. It is reasonable to say that the cognitive architecture is realized in neural technology 
and that it was created by evolution. 

3.3 The nature of cognitive architecture: Functions 

Since the architecture is defined in terms of what it does for cognition, the nature of the 
cognitive architecture is given in terms of functions, rather than structures and mechanisms. 
What are some functions defining this nature of cognitive science? 

Memory - composed of structures that contain symbol tokens. 
Symbols - patterns that provide access to distal symbol structures 
Opemtions on symbols - processes that take symbol structure as an input and produce 

( compose) new symbol structures as output; a sequence of symbol operations occurs on 
specific symbol structures. 

Operations - can construct symbol structureS that can be interpreted to specify further 
operations to construct yet further symbol structures. 

Interpretation - processes that take symbol structure as an input and produce behavior 
by executing operations 

Intemction with the external world - perceptual and motor interfaces; real time demanc;ls 
for action 

One additional consideration that is specific to the nature of human cognition is that the 
human mind can carry out a large number of constructions that seem very natural and so 
universal that they must be severely constrained [9]. 

4 Conceptual Tool: Categorical Logic 

Natural logic involves the simultaneous addressing of constancy and change, because change 
is realizable only relative to constancy. In the logic of types and kinds, predicates and modal 
connectives express change. Categorical logic with inherent functoriality, is appropriate to 
deal with such constancy and change. In the same manner, categorical logic is the convenient 
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mathematical environment for handling that functor between linguistic structures and the 
structure of the non-linguistic well as interpretation. 

The categorical logic, the study of logic with the help of categorical means, has produced 
many important results. Suffice it to mention the generalization of Kripke-Beth semantics 
for intuitionistic logic to sheaf semantics by Joyal. Ellerman 1987 has tried to show that 
category theory· constitutes a theory of universals which has properties radically different 
from set theory considered as a theory of universals. If we move from universals to concepts 
in general, we can see how category theory could be useful even in cognitive science. Indeed, 
Macnamara and Reyes have already tried to use categorical logic to provide a different logic 
of reference [9]. 

The logic of types and kinds takes on a mathematical life of its own, it retains a structural 
harmony of its own. It is discovered by studying the category of kinds. The logic of kinds is 
expressed in terms of categorical logic. Categorical logic is intuitionist, though it can also 
be classical when the occasion arises. Natural logic is many-sorted, and categorical logic, 
because it treats arrows as basic, seems specially adapted to deal with many-sorted systems. 

4.1 Topos 

The 'element-free' formulation of mathematicsprovided'by category theory is most strikingly 
realized by applying it to set theory itself. Formally, an elementary topos e is a finitely 
complete category with exponentials and a subobject classifier n. A subobject classifier or 
truth-value object in a category with a terminal object is an object n together with an 
arrowT: 1 -+ n called the truth arrow, from the terminal object 1, such that the diagram 
has a universal (pullback) property: For each arrow m: B -+ A there is a unique arrow, 
called the characteristic arrow of m, x( m): A -+ n such that T 0 b = x( m) 0 m. 

More precisely, (1) e has pullbacks and a terminal object (and therefore, all finite limits), 
(2) e is cartesian closed, and (3) e has a subobject classifier. 

In any topos e one can give natural definitions of arrows ('logical operations' in e), 
rv: n -+ n; v, 1\, ~: n x n -+ n in such a way that, if we regard these arrows as 
algebraic operations on n, the resulting (Heyting) algebra satisfies the laws of intuitionistic 
propositional logic. In this sense intuitionistic logic is 'internalised' in a topos. With some 
justice, then, we may regard a topos as an instrument for reducing lo~c to mathematics, the 
remarkable thing being that the logic obtained is not (in general) classical, but intuitionistic. 
Thus category theory, far from being in opposition to set theory, ultimately enables the set 
concept to achieve a new universality [6]. 

4.2 Cognition ~ Categorical Logic 

Category theory can also be viewed as a foundational discipline capable of clarifying and 
sometimes expanding our understanding of mathematical knowledge and its applications. 
This change is mainly to the discovery of F. W. Lawvere that some categories may be 
viewed as universes of variable/cohesive sets, capable of modelling theories that lack models 
in the more rigid universe of constant sets. Already, category theory has been applied to a 
variety of subjects ranging from physics to linguistics. 



386 Mara Alagic 

Category theory could be a conceptual tool in the study of cognition. The thesis is . 
that the explicit adequate development of the science of knowing will require the use of the 
mathematical theory of categories [8]. 

Category theory has developed a variety of notions in order to provide a guide to the 
complex constructions of the concepts and their interactions which grow out of the study 
of space and quantity. Galileo's insight is that physics and mathematics mutually constrain 
each other; Chomsky's insight is that psycholinguistics and linguistics constrain each other. 
J. Macnamara suggests that cognition and logic constrain each other in the same manner 
and he is contributing that insight to the father of logic, Aristotle. This relation can be 
expressed as Cognition +=Z Logic. And, in the context of this paper, without collapsing to a 
single subject, Cognition ~ Categorical Logic. 

Macnamara [9] shares his vision that in cognition we are in the year 1690. Our calculus 
(categorical logic) has been invented. A deep and satisfying theory of the human mind 
will be developing and replacing tendencies in 'cognitive studies' that are unworthy of their 
subject. 
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