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Introduction 

The world surrounding us is composed of objects. Object recognition is an important factor in our 
survival and functionality in the world. Through our senses, we learn the properties of objects and 
distinguish them from one another. We learn, in particular, that objects occupy "volume" and are 
bounded by "surfaces", the type of entities whose existence and properties are learned through a 
combination of senses. Eventually, our visual perception .of the external world relies on our ability to 
distinguish various pieces of surfaces, to integrate collections of surfaces into parts of an object, and to 
fill any missing information by inference and other mechanisms that develop as part of our survival 
strategy. Thus, a theory of visual perception of surfaces is at the heart of any comprehensive theory of 
human perceptual organization. First studied by Gestalt psychologists early in this century, perceptual 
organization concerns how retinal images are structured, how the various regions and elements are 
perceived as being related to each other in terms of part-whole relations, as well as various geometrical 
relations. Among the most pervasive and difficult problems in vision science are the nature of perceptual 
organization and the mechanisms responsible for it. 

Perceptual geometry is an emerging field of interdisciplinary research whose objectives focus on 
study of geometry from the perspective of visual perception, and in tum, apply such geometric findings 
to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in 
perception of form and representation of space through synthesis of cognitive and biological theories of 
visual perception with geometric theories of the physical world. In our previous papers (Assadi 99), we 
have proposed a basic mathematical model for the Gestalt of surfaces, that is, the simplest phase of 
global perception of surfaces in the environment, as opposed to visual perception in laboratory and 
psychophysical experiments under controlled parameters. The result at this point is a computational 
model for perception of form (or Gestalt) of surfaces in natural environments, including those that have 
rough and non-smooth small-scale structure but with a perceived global (larger-scale) geometric form. 
Examples include grass and meadow, surfaces textured with sand-paper, natural scenes having rough 
texture such as the skin of crocodile, pine cones, a field of sea urchins, forests, etc. 

The problems of figure-ground separation and scene segmentation in perceptual geometry could 
be formulated in terms of structural regularity of regions of images in statistical and information theoretic 
terms. Intuitively, as well as in psychophysical studies performed by cognitive scientists (e.g. Palmer, 
Rock, Tyler), perception of local structural regularity is fundamentally correlated with perception of local 
symmetry of surfaces, and under parallel projection of planar surfaces, with local symmetries of their 
images. In other words, such local symmetries distinguish prevalent regularity of common surfaces in the 
environment from randomness in arbitrary composition of colored dots, or what is the same, they 
distinguish between a meaningful image versus a generic pattern of a totally random selection of light 
intensities in matrices encoding local incoherence in optical properties. From a mathematical point of 
view, it can be shown that in the space of all possible patterns of light (i.e. all large matrices of same size 
with non-negative coefficients), the set of possible images of natural scenes is a very small subset. In the 
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technical jargon of mathematical analysis, true images form a subset of measure zero in the space of all 
pos~jble 2-dimensional patterns representing arbitrary light intensities. 

We use the term symmetry in reference to all kinds of transformations that leave invariant some 
form of geometry, together with the related concepts such as harmony. Therefore, similarity in Euclidean 
plane geometry is a form of symmetry (in the so-called conformal geometry, where angles are preserved) 
although it is not necessarily a rigid motion. The term quasi-symmetry can be used for perceived 
regularity of structure that is compelling in its organization, but fails to be a strict symmetry in the 
mathematical sense above. This aspect of our research has a long-term history in psychology as the 
investigation of cognitive processes that underlie human perception of geometric forms, much the same 
way that Henri Poincare' posed in his 19-th Century treatise Science and Hypothesis and led to his 
construction of non-Euclidean geometry and optics [19]. 

Among many researchers'studying symmetry, S. Palmer and I. Rock have contributed to our 
understanding of the role of Gestalt in perceptual organization in the context of symmetry, (e.g. Palmer, 
1977; Palmer & Rock, 1994), and the formation of those aspects of our research that could belong to the 
domain of Gestalt Psychology, or mathematically speaking, passage of local-to-global properties in the 
context of geometric form. One of the main topics investigated by Palmer concerns the perception of 
internal geometrical structure in 2-D figures, including symmetry (Palmer, 1985; Palmer & Hemenway, 
1978), part-whole relations form vs. texture (Kimchi & Palmer, 1982), figural goodness (palmer, 1991), 
object-centered reference frames (Palmer, 1990), and grouping (palmer, 1983; Palmer & Rock, 1994). In 
all these research areas, Palmer's approach has been to develop objective behavioral methods that can be 
used to study the stimulus factors that influence perceptual phenomena. In many cases, his theories have 
taken a transformational approach to problems of perceptual organization, where he analyzes phenomena 
in terms of the action of the similarity group (Palmer, 1982, 1983, 1991). 

Biological Motivation 

Our research has a long-term objective: to investigate the cognitive processes that underlie our perception of 
geometric forms. The time is ripe to address this question in the realm of cognitive neuroscience. While our 
proposed computational model serves to investigate and support the cognitive theories, it reveals the 
potential for a refmed approach to cognitive and biological models of visual information processing 
channels. One could generally agree that the increasingly rapid pace of advances in our understanding of the 
biology of the brain and advances in computation power will open new ways for investigation of information 
processing in the brain. Thus, we are optimistic that in foreseeable future, we will have the scientific tools to 
understand neuronal substrates of low-level computations of visual, tactile, motor and auditory processes, 
which contribute to our perception of symmetry and regularity in structure. 

This paper is a second computational attempt at modeling detection of repetitive patterns in visual 
perception, and potential reasoning about alinost structural regularity in the presence of noise and natural 
imperfections of visual stimuli. Being as small a step as it may be, we propose a possible approach for visual 
perception of geometric form of surfaces endowed with symmetric patterns in their texture. The key 
biological obserVation is the dynamic nature of vision: visual perception of the physical world depends on 
saccades, the tiny, almost instantaneous jitters of the eyeballs (e.g. see pp. 78-80). Without such seemingly 
random motions of the eyes, the photoreceptor cells of the retina get chemically saturated from the steady 
invasion of photons, and the image on the retina ceases to exist! All neurons in the visual cortex have 
receptive fields (see Hube11995, page 41-43), defmed, roughly speaking, as the cone-shaped region of the 
space measured in terms of the visual angle. This potentially stimulates a neuron through its variation of light 
intensity. The concept of the receptive field and its biological properties leads us to hypothesize that: there is 
a biologically realistic hybrid computational model of intermediate-level vision in which the process of 
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neuronal detection of visual symmetry in the presence of repetitive patterns involves an adaptive series of 
comparison of patterns of spike trains. This is due to visual stimuli that are brought about by a sequence of 
saccades. 

We refer to this statement as the Adaptive Saccades Hypothesis for detection of symmetry. The 
long-term goal of the present research includes. formulation and verification of models that incorporate 
hypotheses such as the Adaptive Saccades Hypothesis above. Therefore, our first attempt focuses on 
modeling adaptive processes that simulate saccades and comparison of the resulting neural activation, in 
parlance of neural networks and learning theory (Latimer, 1996). fu this paper, we consider a simplified 
version of the above-mentioned theory: a computational model is presented that detects the fundamental 
domain for translation symmetry of patterns on a flat surface parallel to the observer's plane of view (or 
the robot's camera screen). This model is robust with respect to noise, partial occlusion and some 
irregularity in the translation symmetry. Moreover, it lends itself to generalization to visual attention and 
theories of active vision. Finally, there is a generalization to hybrid adaptive implementations that 
incorporate support vector machines, a regression technique that has its biological justification in the 
finer anatomy of the superior colliculus. fu a forthcoming paper, we present the generalization of the 
model below to incorporate support vector regression. 

Perception of symmetry in the human brain has been the subject of various studies. The 
approach in neurobiology, the so-called bottom-up approach (see for example, Hubel 1995), proceeds to 
study the cascade of neuronal events from the onset of the stimulus as it progresses toward the emergence 
of the percept of symmetry (Julesz 1979; Troscianko 1987). fu contrast, many experimental and 
cognitive psychologists take a "top-down" viewpoint (Rock 1963; Palmer 1978; Royer 1981; Van Gool 
1990; Wagemans 1993). fu the "top-down" construct one proposes a theory (based on the 
psychophysical measurement) that reconstructs the sequence of events in the brain leading to the 
observed behavior; see e.g. (Hogben 1976; Zimmer 1984; Herbert 1994). Alternatively one may propose 
a theory where both top-down and bottom-up reasoning, possibly with several building blocks of each 
kind. Such hybrid theories use each type of reasoning in a sequence that complements and improves 
partial results in individual steps. More generally, it is reasonable to propose a more integral (holistic) 
approach to study symmetry, for instance, by considering the higher-level cognitive functions, such as 
thinking, creativity, and problem solving (Van Goo11990; Rentscher 1996; Varshney and Burrus 1997). 

As a starting point, it is convenient, and not so unreasonable to begin with the assumption that 
any computational theory of perception of symmetry would most likely use the special cases of 
translation and reflection of planar periodic tilings as one of its building blocks; see e.g. (Royer 1981). 
As for reflection symmetries, there is a great deal of research that is partially outlined in (Tyler 1996) and 
elsewhere (e.g.(Gerbino 1991) (Wagemans 1992; Wagemans 1993; Wagemans 1996». fu fact, almost all 
articles in that volume are devoted to bilateral and reflection symmetry (e.g. (Marola 1989; Dakin 1996» 
with a few exceptions dealing with circular and rotation symmetries (Palmer 1978). Translation 
symmetry seems, for the most part, not adequately covered in the literature (see (Corballis 1974; Bruce 
1975; Baylis 1994». As for connectionist models, back propagation model for detection of reflection 
symmetry are provided in (Baylis 1994; Latimer 1996). Dakin and Watt, on the other hand, have used 
spatial filters for detection of bilateral symmetry (Dakin 1996). Thus, for the remaining part of this paper, 
we concentrate on translation symmetry. 
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Review. of Related Previous Results 

In our previous work (Manske, et. al, 1999), detection of symmetry in periodic tiling was studied from 
the point of view of machine vision. The very systematic approach of the main algorithm to search and 
target selection in the image makes the model of (Manske, et. aI, 1999) incompatible with the human 
visual search and natural eye movement. Nonetheless, a case was made for a dynamic model of symmetry 
detection where adaptive saccades in conjunction with visual attention play an important role. In this 
work, we present a computational model of saccadic target selection and simulate its action in the context 
of perception of global symmetry of tiling. This approach uses local (foveal) symmetry estimation via 
direct saccadic eye movements,in agreement with well-known biological models of human eye 
movement. However, the variant of spatial channels considered in this paper are motivated by wavelets 
and filtering, rather than the model based on spatial Fourier transform. From the point of view of 
computational efficiency and numerical convergence, the model is certainly superior to the Fourier 
alternative. While the computationally proposed approach has not been experimentally tested by 
biologists in the laboratory, the localized nature of wavelet supports appears to fit better with the Gabor
like filter models of receptive fields in the neural circuitry of low-level primate vision. 

The motivation for a model of saccadic target selection fmds its roots in the properties of the 
superior colliculus (SC). Studies of SC indicate that the nature of the information processing is highly 
distributed and integrated over a large spatial area. More specifically, the following is known: (1) In the 
SC, visual cells have large and overlappinRreceptive fields; (2) The SC has a layered architecture where 
retinptopic mapping is preserved; (3) The size of the visual fields increases systematically with depth of 
layers. It has been demonstrated that any paiticular point in the collicular motor map can be stimulated 
by visual input from a wide region of the visual space. Conversely, stimulation from a punctate 
peripheral source can generate activity over a wide area of the colliculus. 

A Heuristic Discussion Of Symmetry Detection 

We start with the consideration of the tiling of a rectangular subset of the plane s with the rectangular tile 
B. For a perfect (no partial tiles) and noiseless tiling, the regularity of the structure of this subset can be 
determined by solving the following problem: Determine B with the smallest area such that s can be 
reconstructed from a number of horizontal copies and a number of vertical copies of B. In this 
deterministic setting, the problem can be viewed as finding a basic element for s in the following way. 
The subset s is obtained form translates of this basic element B and the apparent large data volume of s 
can be compressed by finding the basic element B and constructing s from the translates of B. To 
address the same problem in the presence of noise and other imperfections, we must solve the search for 
this basic element in the statistical setting. In this setting we view s as a signal that we wish to represent 
in terms of B yet to be determined. 

The traditional Fourier representation of a signal is based on the superposition of sinusoids. The 
sinusoids can be thought of as elements of a dictionary - a collection of parameterized waveforms. 
However, one may choose from a host of alternate dictionaries such as wavelets, chirplets, cosine packets 
and others. Each such dictionary D is a collection of elements fIJ, ' where t is a parameter, and is used to 

decompose a signal s in the form of: 

S = La,flJ, +C 
I 

Where C is a "error" term representing how well the signal s is approximated using the given 
dictionary. The goal of using alternative dictionaries is to obtain a sparse as well as robust representation 
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of the signals. However, the sparseness requirement makes for a difficult optimization problem since 
minimizing the number of coefficients in the representation of s above requires a combinatorial check of 
all coefficient possibilities. Mallat and Zhang [15] proposed a general approach (called matching 
pursuit), based on the simple idea that one can start with an initial approximation and at each stage find 
the element in the dictionary such that its multiple minimized the residual C - a simple greedy algorithm. 
The algorithm is stopped after a few steps and the representation of the signal contains only a few 
elements of the dictionary. Of course, as it has been pointed out by Devore [6], this algorithm can fail 
badly for certain signals and non-orthogonal dictionaries. Basis pursuit as proposed by Chen [23] solves 
some of the problems by attempting to minimize the LI norm. However, most of the work mentioned so 
far and the reference therein considers the problem of choosing coefficients for a given dictionary. 

The case of interest for us is to construct a (small) dictionary such that one of the items in the 
dictionary can be used to represent the information content of the entire signal. Loosely speaking, we 
wish to fmd an element for, the dictionary such that any random selection of a segment of the entire signal 
effectively provides no additional information beyond what is available from the selected element from 
the dictionary. For this approach, we only borrow the spirit of the Manat and Zhang algorithm in the 
sense that we start with an approximate solution and look for improving residual errors through 
iterations. However, the analogy stops at this level since our algorithm uses a multiscale search criteria 
and an information theoretic measure for its approach as will be described in the next section. 

Principal component analysis (PCA) is a well-known statistical method for lowering the 
dimensionality of a data set by finding a set of basis, which contain "most" of the information in the 
original data set. To use the PCA approach to discover the tile B the single image object represented by s 
must be transformed into a collection of data. A straightforward approach would proceed as follows: 
Choose a trial size for B and break s into a collection of trial Bs that will act as the collection of data for 
the PCA. Compare the results of PCA with those of another trial B and continue until a Ii is found that 

- has the optimal size(this is reminiscent of Mallat's algorithm). The computational difficulty with this 
approach stems from the large search space associated with the solution of the problem. There is also a 
conceptual difficulty which stems from our desire to use a dynamic process in which an approximate 
symmetry is detected and then continually refmed - i.e. the use of coarse grain information to determine 
approximate symmetry and then refming by using fine-grained information. 

We introduce a dynamic initial process based on entropy and operating on a "low-resolution" 
version of the signal, which can operate in parallel with "high-resolution" information to discover 
symmetries. Entropy is a measure of order and is related to PCA as we will see below. The initial 
process operates using the entropy measure for a continually refined coarse grained information. This 
process is used to determine the initial approximation for the size of B which is continually refined with 
the first process. 

peA and Entropy 

Suppose that we have broken the rectangular domain D into a set of tiles. Each tile can be treated as a 

zero mean vector indexed by the variable t, X(t), define the covariance matrix R: R = E[ X (t)X T (t) ] 

(E denotes the expectation). Let R = U AUTbe the eigendecomposition of R where U = [~,···,un] is 

an orthogonal matrix formed by eigenvectors ~"", Un' and A = diag(A,.,"·, An) a diagonal matrix 

formed by eigenvalues of R. Then, in this new coordinate system, X(t) can be written as: 
X (t) = al (t)~ (t) + ... + an (t)un (t) 
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where ai(t) = X (t)ui ' and the following properties are satisfied: 

E[ai(t)] = 0, E[ai2(t)] = A" E[ai(t)aj(t)] = 0 fori * j 
In this setting, given X(t), PCA provides a new coordinate system in which ai are decorrelated. For the 

precise tile size any two adjacent blocks are maximally correlated. Therefore, decorrelation of the 
precise tile size means that a first eigen-value is significantly larger compared to the remaining eigen
values. 

However, as we pointed out in the informal discussion, searching the large space of all tile sizes 
is not an efficient approach. To remedy the inefficiency we introduce a dynamic multi-scale process that 
uses entropy at a coarse grain level to obtain an initial approximation of the tile size. Given a set of 
discrete random variables (or symbols) denoted by Xi with probability of the event Xi denoted by P( Xi) , 

entropy is defmed as: 

H(x) = E[log(P(x»] = -LP(x)log(P(x) 

The concept of mutual information between random variables. x and y is related to the concept of joint 
entropy and is defined as: 

I(x,y) = H(x)+H(y)-H(x,y) where H(x,y) = -E[E[log(P(x,y»]] 
where P(x , y) is the joint probability of events x and y. Notice that H(x , y) is zero when events x and y 
are statistically independent. It is important at this point to notice that when the distribution of the 
random variables follows a Guassian distribution, finding decorrelated components as done by PCA is 
the same as minimizing mutual information. Therefore, the two approaches of PCA and entropy are 
closely related. We also note that both methods are applicable to symmetric tiling without the presence 
of any projective transformations. 

To use entropy in a dynamic process we require another ingredient. One must observe two 
important facts: 1) entropy as defined is invariant under a permutation of symbols. 2) entropy is subject 
to fluctuations when noise is present, 3) accurate computation of entropy requires the knowledge of 
distribution of the random variables. Although, the distribution is often taken to be synonymous with 
frequency, the use of frequency may introduce unacceptable inaccuracies. Furthermore, the invariance 
to permutations has the potential of giving false positives. We can overcome these problems in practice 
by introducing an filtering operator F. In the discrete case of images we are considering, the filtering 
operator replaces every pixel with an average of the pixels in a neighborhood: 

1 l=s,m=t 

F(i,j) = L F(i+l,j+m) 
(2s + 1)(2t + 1) l=-s,m=-t 

where s and t define the dimensions of the window over which averaging is performed. Since F captures 
information from a neighborhood it has the affect of reducing noise, reducing the affect of inaccuracies 
of estimating the distribution form the frequencies and reducing the affect of false positives resulting 
from permuted sets. Furthermore, from a biological view point, it is the statement that the coarsest level 
of information, that is what is available first, is used for estimates as soon as it is available. 

Computational Formulation of Symmetry Detection 

For our computational work we have used a series of images which contain both natural as well as 
synthetic symmetries. The images are stored as grayscale images with 256 levels of gray and are 
normalized to have intensity between values of zero to one. The algorithm is written in the Matlab 
computational environment and the core of the algorithm excluding the filtering portion runs very fast. 
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We describe how the overall process can be visualized in the following diagram where we have 
commented alongside the diagram. 

Starting at the coarsest level of resolution we 
proceed to compute entropy for a window which 
is ¥I the size of the entire window. 

First filter the image to the initial window size 
compute entropy for a random window location 
and repeat for a second random window. 
if entropy continues to decrease, we want to 
continue with increasing resolution and 
measuring entropy, 

If entropy begins to increase for both windows 
then we may be transitioning to a window of size 
smaller than the symmetric tile. 

First we optimize the PCA process for the 
horizontal line scans and then optimize PCA for 
the vertical line scans. 

Entropy_decreasing = true; 
InitiaL Window = O.25*max(size(image)); 
P _Entropy = large_number; 
while (entropy_decreasing) 

I = Filter with F in InitiaL Window 
e1= I:Jntropy_oLrandom_window(J) 
e2= entropy_oLrandom_window(l) 
if e1 < p_entropy or e2 < p_entropy 

else 

endif 

p_entropy = min(e1,e2); 
half the size of InitiaL Window 

if e1<e2 report e1 
else report e2 

w = width(reported window); 
w = optimize_PCA(w,I,'horizontaI1; 
h = height(reported_window); 
h = optimize_PCA(h,I,'vertical',w) 

The simulation results are illustrated in the figures below. From our simulation we have found 
that the entropy portion of the algorithm always overestimates the size of the symmetry window. This 
allows the peA portion of the algorithm to start with the window as an upper bound. We also found that 
the entropy portion of the algorithm works just as well with non-rectangular tiles. We use this fact later 
to discuss how non-rectangular tiles detected. Finally we mention that we determine the size of the tile 
and not necessarily the tile itself. The choice of the tile has cognitive components that need to be 

encoded in a level ~gg~~---------rr= 

Initial entropy minimization leads 
to an estimate of tile size. The 
tile is shown on the background 
of the image. Top image is the 
original. Bottom image is the 

. version of the 

The entropy is measured after 
applying the averaging operator 
with decreasing window size. 
The two images show how images 
appear at the scale at which the 
tile size was determined. 

Final estimate of the window size 
at the corresponding level of 
application for the averaging 
operator is shown in the smaller 
tile with the white background. 
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Two images from handmade The entropy measure is used on 
carpets were used for symmetry the image that appears as shown 
detection. Notice that these for corresponding carpets. 
images are not perfectly tiled 

Although as symmetric figures The images show -what the 
they perceptually appear not to entropy measure "sees" for 
have a clear rectangular region computing entropies. Notice the 
that generated it the entropy clear presence of patterns. 
estimation shows a tile of 
reasonable 

peA to determine the final tile 
size is shown. Notice that in the 
top case the tile size is not exactly 
correct. 

These two images show one of 
the images in figure 1 that now is 
corrupted by non-uniform noise. 
Top shows the entropy estimate 
measured at the scale shown by 
the bottom 



Saccades and Perceptual Geometry: Symmetry Detection through Entropy Minimization 377 

REFERENCES 
[1] Assadi, A., Palmer, S., and Eghbalnia, H., Ed. (1998). Learning Gestalt Of Surfaces In Natural 

Scenes. Proceedings of IEEE Int. Conf. Neural Networks in Signal Processing. 
[2] Bruce, V. G. a. M., M. J. (1975). "Violations of symmetry and repetition in visual patterns." Perception 

4: 239-249. 
[3] Corballis, M. C. a. R., C.E. (1974). "On the perception of symmetrical and repeated patterns." Percept. 

Psychophvs. 16: 136-142. 
[4] Dakin, S. C. a. W., A. J. (1996). Detection of bilateral symmetry using spatial filters. Human Symmetry 

Perception. C. W. Tyler. Utrecht, the Netherlands, VSP BV: 187-207. 
[5] Davies, E. A. (1997). Machine vision: theory, algorithms. practicalities. San Diego, Academic Press. 
[6] De Vore, A.A., Temlyakov, V.N. (1996). "Some remarks on greedy algorithms". Advances in 

computational mathematics (5). 
[7] Haralick and Shapiro (1988). Computer and Robot Vision Vol. 1. 
[8] Herbert, A. M., Humphrey, G.K. and Jolicoeur, p. (1994). ''The detection of bilateral symmetry: Effects 

of surrounding frames." Can. J. Exp. Psychol. 48: 140-148. 
[9] Hogben, J. H., Julesz, B. and Ross, J. (1976). "Short-term memory for symmetry." Vision Res. 16: 

861-866. 
[10] Hubel, D. (1995). Eye. Brain, and Vision, W.H. Freeman and Company. 
[11]Julesz, B. a. C., J. J. (1979). "Symmetry perception and spatial-frequency channels." Perception 8: 

711-718. 
[12] Kanade, T. a. K., J. A. (1983). Mapping image properties into shape constraints: Skewed symmetry, 

affine-transformable patterns, and the shape-from-texture paradigm. Human and Machine Vision. J. 
Beck, Hope, B., and Rosenfeld, A. New York, Academic Press. 1: 237-257. 

[13] Kurbat, M. A. (1996). A network model for generating differential symmetry axes of shapes via 
receptive fields. Human Symmetrv Perception. C. V. Tyler. Utrecht, the Netherlands, VSP BV: 227-
236. 

[14] Latimer, C., Joung, W., and Stevens, C. (1996). Modeling symmetry detection with back-propagation 
networks. Human Symmetrv Perception. C. W. Tyler. Utrecht, the Netherlands, VSP BV: 209-225. 

[15] S. Mallat and Z. Zhang Matching pursuits with time-frequency dictionaries IEEE Trans. on Signal 
Process., 12(41), pp. 3397-3415, 1993. 

[16]Manske, K., Assadi A., Eghbalnia, H. (1999). The Second Bridges Conference, Reza Sarhangi, Ed. 
(1999) 

[17]Marola, G. (1989). "On the detection of the axes of symmetry of symmetric and almost symmetric 
planar images." IEEE Trans. Pattern Anal. Machine Intell. PAMI-11: 104-108. 

[18] Palmer, S. E. a. H., K. (1978). "Orientation and symmetry: Effects of multiple, rotational, and near 
symmetries." J. Expo. Psychol: Human Percept. Perform. 16: 150-163. 

[19] Poincare, H. (1943) "Science and Hypothesis". Dover Publications. 
[20] Rentscher, I., Barh, E., Caelli, T., Zetzsche, C., and Juttner, M. (1996). On the generalization of 

symmetry relation in visual pattern classification. Human Symmetrv Perception. C. W. Tyler. Utrecht, 
the Netherlands, VSP BV: 237-264. 

[21] Rock, I. a. L., A. (1963). "An experimental analysis of visual symmetry." Acta Psychol. 21: 171-183. 
[22] Royer, F. L. (1981). "Detection of symmetry." J. Exp. Psychol: Human percept. Perform. 7: 1186-1210. 
[23] Chen, S.S. (1994). "Basis Pursuit - Ph.d Thesis" , http://www-stat.stanford.edu/-schen. 
[24] Troscianko, T. (1987). "Perception of random-dot symmetry and apparent movement at and near 

isoluminance." Vision Res. 27: 547-554. 
[25]Tyler, C. W., Ed. (1996). Human Symmetrv Perception and its Computational Analvsis. Utrecht, the 

Netherlands, VSP BV. 
[26]Van Gool, L., Wagemans, J., Vandeneede, J., and Oosterlinck, A. (1990). Similaritv extraction and 

modelling. Third Int. Cont. Computer Vision, Washington, D.C. 
[27]Varshney, P. K. and C. S. Burrus (1997). Distributed detection and data fusion. New York, Springer. 
[28]Wagemans (1996). Detection of visual symmetries. Human Symmetrv Perception. C. W. Tyler. 

Utrecht, the Netherlands, VSP BV. 
[29]Wagemans, J., Van Gool, L.and d'Ydewalle, G. (1992). "Orientational effects and component. 

processes in symmetry detection." Q. J. Exp. Psychol. 44A: 475-508. 



378 Hamid Eghbalnia and Amir Assadi 

[30]Wagemans, J., Van Gool, L., Swinnen, V., and Van Horebeek, J. (1993). "Higher-order structure in 
regularity detection." Vision Res. 33: 1067-1088. 

[31]Washbum, D. K., and Crowe, D. W. (1988). Symmetries of Culture. Seattle, WA, University of 
Washington Press. 

[32]Weyl, H. (1952). Symmetry. Princeton, NJ, Princeton University Press. 
[33]Zimmer, A. C. (1984). "Foundations for the measurement of phenomenal symmetry." Gestalt 

Theory 6: 118-157. 


