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Abstract 

Symmetry is important in the development and performance of the visual system. Most of the current research findings on 
perception and computational modeling of symmetry focus on the biological significance of bilateral symmetry in the visual 
system of primates and psychophysics of reflection symmetry in human vision. There seems to be little previous work done 
on modeling detection of translation symmetry in the human visual system. In this paper, we study the problem of detection 
and characterization of translation symmetry in plane surfaces. We also explore their generalization to the case of a planar 
surface situated in the 3-space with a slant, tilt, or both. Besides contribution to computational modeling of human visual 
perception of symmetry, this research provides algorithms for characterization of texture and geometric properties of planar 
surfaces in computer vision. 

On the theoretical side, we discuss the reduction of a complete solution to perception of arbitrary planar symmetries 
to the ~pecial cases of characterization of translations and reflections. On the computational side, we provide an algorithm 
based on geometric and statistical considerations to detect and determine the fundamental domain for translation symmetries 
in planar surfaces parallel to the viewer's eye (or the robot camera's image plane). We have included a brief review and 
critique of results from mathematics of tiling, psychophysics, and neurobiology of the visual systems pertaining to detection 
of bilateral symmetry. Finally, we discuss the limitations and successes of our algorithms, and the issues of effectiveness and 
performance of our computation methods. 

Introduction 

Symmetry is a manifestation of structural harmony of objects and of transformations leaving invariant 
their geometric structure. Symmetry has played a ubiquitous role in our civilization throughout all ages. 
In all intellectual pursuits, symnietry lies at the very foundation of intuitive geometric reasoning [1]1. 
Humankind has been fascinated by the inherent beauty of symmetry in Nature, and we have explored and 
searched for understanding of its implications in our cultures [2]. This preoccupation with symmetry has 
led to discovery of rich mathematical theories to explain and apply in a vast number of subjects ranging 

1 Here, we would like to use the term symmetry in reference to all kinds of transfo~mations that leave invariant 
some form of geometry, together with its related cognitive concepts such as harmony. Therefore, similarity in 
Euclidean plane geometry is a form of symmetry (in the so-called conformal geometry, where angles are preserved) 
although it is not necessarily a rigid motion. The term quasi-symmetry may be used for perceived regularity of 
structure that is compelling in its organization, but fails to be a strict symmetry in the mathematical Sense above. 
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from anthropology [2] and the arts, to engineering and the sciences [I, 3-5]. In applications, symmetry 
plays an equally key role for modeling perception of the outside 3-dimensional world [6-8]. 

The remaining parts of the paper are listed below. In the next section, besides a brief discussion 
of background from cognitive science, we outline how the present computational model generalizes to a 
computational theory for detection of translation regularity of geometric structure of natural ( or synthetic) 
surfaces. In Section Two, we justify in outline why detection of only two simple kinds of symmetries, 
translation and reflection, is sufficient for detection of repetitive patterns on surfaces. In Section Three, 
we present our computational model with a discussion of the algorithms and their implementation. 
Section Four contains a brief analysis of the weaknesses of the software, and proposes a method for 
evaluation of performance of computational models based on statistical accuracy of the predictions as 
well as psychophysical experiments designed to compare human versus machine performance. Finally, 
Section Five contains a brief description of Principal Component Analysis, a promising technique for 
improving our computational model. 

Section One: Background and Motivation 

Our research has a long-term objective: to investigate the cognitive processes that underlie our perception 
of geometric forms. We believe that the time is ripe to address such issues in the realm of cognitive 
neuroscience. Computational models serve to investigate and support the cognitive theories. in addition, 
computational models reveal the potential approaches to cognitive and/or biological models. One could 
generally agree that computational simulations prevent possible pitfalls in realistic models, and play an 
important role in providing hints to avoid resource-intensive approaches. It is likely that the increasingly 
rapid pace of advances in our understanding of the biology of the brain and advances in computation 
power will open new ways for investigation of information processing in the brain. Thus, we are 
optimistic that in foreseeable future, we will have the scientific tools to understand neuronal substrates of 
low-level computations of visual, tactile, motor and auditory processes that contribute to our perception of 
symmetry and regularity in structure. . 

This paper is a first computational attempt at modeling detection of repetitive patterns in visual 
perception in the presence of noise and natural imperfections of visual stimuli. Being as small a step as it 
may be, we propose a possible approach for visual perception of geometric form of surfaces endowed 
with symmetric patterns in their texture. The key biological observation is the dynamic nature of vision: 
visual perception of the physical world depends on saccades, the tiny, almost instantaneous jitters of the 
eyeballs [9] (e.g. see pp. 78-80). Without such seemingly random motions of the eyes, the photoreceptor 
cells of the retina get chemically saturated from the steady invasion of photons, and the image on the 
retina ceases to exist! All neurons in the visual cortex have receptive fields [9] defined, roughly speaking, 
as the cone-shaped region of the space measured in terms of the visual angle. The concept of the 
receptive field and its biological properties leads us to hypothesize that: there is a biologically realistic 
hybrid computational model of intermediate-level vision in which the process of neuronal detection of 
visual symmetry' in the presence of repetitive patterns involves an adaptive series of comparison of 
patterns of spike trains.2 This is due to visual stimuli that are brought about by a sequence of saccades. 

We refer to this statement as the Adaptive Saccades Hypothesis for detection of symmetry. The 
long-term goal of the present research includes formulation and verification of models that incorporate 
hypotheses such as the Adaptive Saccades Hypothesis above. Therefore, our first attempt focuses on 
modeling adaptive processes that simulate saccades and comparison of the resulting neural activation, in 

2 Spike train refers to the pattern of neuronal firing, or action potentials, recorded by electrophysiological 
measurement from outside or inside of a neuron. 
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parlance of neural networks and learning theory [10]. In this paper, we consider a simplified version of 
the above-mentioned theory: a computational model is presented that detects the fundamental domain for 
translation symmetry of patterns on a flat surface parallel to the observer's plane of view (or the robot's 
camera screen). This model is robust with respect to noise, partial occlusion and some irregularity in the 
translational symmetry. In a forthcoming paper, we present the generalization of this model to 
incorporate saccades and visual learning [11]. 

Section Two: Translation Symmetry and Geometric Theories for Perception of Texture 

One approach to learning how the human visual system works is to study how the brain detects 
symmetry. Here is a brief description of some different types of symmetry. It is followed by a few brief 
remarks on previous work studying human perception of symmetry, and a description of how this paper 
and forthcoming papers naturally extend the existing work. 

From a purely mathematical viewpoint, it is well known that the group of symmetries of 
tessellations of the Euclidean plane is. generated by composition of two types of transformations: 
reflections (in suitable axis) and translations. For example, Figure 1 shows an image that has reflection 
symmetry about the vertical and horizontal axes. 

A generalization of tessellation is tiling of the plane. A tiling need not have any symmetry at all, 
a jigsaw: puzzle is an example of this. However, of interest are periodic tilings, which can be recreated by 
tiling a small subset of the image. An example of a periodic tiling is shown in Figure 2. More formally, a 
periodic tiling contains a fundamental domain, which is a parallelogram3 p that satisfies the properties 
below: 
1. The plane can be covered with a family P of parallelograms that are translates of p, without any two

dimensional overlaps or gaps. 
2. No reflections or rotations of p are allowed. 4 

3. p is the parallelogram with minimum area that satisfies these properties. 

See [12] for a more complete discussion. 

* Figure] 
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One of the key tasks of the software described later in this paper is to find the fundamental 
domain of an input image, if there is any. 

It is worth mentioning that we do not have still any satisfactory biological and impeccable 
psychophysical evidence that provide a convincing theory of perception of symmetry of patterns, even in 
the simplest circumstances. One example is a flat plane parallel to the observer's view plane 
(perpendicular to the line passing through the cyclopean eyes). Nonetheless, it is convenient, and not so 

3 Our definition of fundamental domain differs from the traditional definition of fundamental domain with regard to 
tilings, which usually does not require the tile to be a parallelogram. 
4 Another difference from the traditional definition is that these types of symmetries are usually allowed. 
5 In other words, the line of sight. 
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unreasonable to start with the assumption that any computational theory of perception of symmetry would 
most likely use the special cases of translation and reflection of planar periodic tilings as one of its 
building blocks; see e.g. [13]. As for reflection symmetries, there is a great deal of research that is 
partially outlined in [14] and elsewhere (e.g.[15] [16-18]). In fact, almost all articles in that volume are 
devoted to bilateral and reflection symmetry, (e.g. [19, 20]), with a few exceptions dealing with circular 
and rotation symmetries [21]. Translation symmetry seems, for the most part, not adequately covered in 
the literature (see [22-24]). As for connectionist models, backpropagation models for detection of 
reflection symmetry are provided in [10, 22]. Finally, Dakin and Watt have used spatial filters for 
detection of bilateral symmetry [20]. Thus, for the remaining part of this paper, we concentrate on 
translation symmetry. 

The research reported in this article explores a computational theory for visual discovery of 
regular patterns on almost smooth flat surfaces. If we momentarily assume a smooth surface, the simplest 
case of this problem is detecting translation symmetry (or tiling) on a flat surface parallel to the 
observer's plane of view. To simplify the problem further, one reduces the texture to a grayscale intensity 
pattern (in other words, removes color). Nonetheless, the complications due to noise, imperfect images, 
and slight irregularities in natural and synthetic textured surfaces cannot be ignored by a theory that aims 
to generalize perception of natural surfaces in the environment. While the case of flat surfaces is quite 
special, it plays a key role in the development of the theory for general surfaces. To this end, we consider 
the problem of estimating the geometric properties of a textured surface whose underlying mathematical 
surface in 3-D is piecewise smooth. At almost all points, one defines a "textured tangentspace" to the 
surface [25], which is a plane (a flat surface) situated in 3-D in a position that is not necessarily parallel to 
the observer's plane of view. In a related work, we address the problem of estimating slant and tilt (in the 
sense of computer vision) of textured planes with translation symmetry [25]. How does one handle the 
case of non-smooth surfaces? In [26], we have proposed a possible approach via the concept of Gestalt of 
surfaces, that reduces the problem of estimation of geometric properties of general surfaces to the case of 
piecewise smooth surfaces endowed with texture. Putting together these results, one has the fundamental 
geometric and computational tools for detection of symmetric patterns on surfaces in the case of 
translation (i.e. repetitive patterns) for a fairly broad class of natural surfaces. Our theory handles the 
imperfections of the images quite well for the most part, while there are still a number of possibilities for 
almost regularity that are not detected by the present. software. Several typical examples are treated 
below. 

Besides applications in science and technology, we hope that the long-term objectives of this 
research draw the attentions of a more general audience to the fundamental role of quantitative and 
qualitative geometric methods that accompany the intuitive reasoning in many aspects of human 
creativity and discovery. 

Section Three: A Computational Model 

Periodic Tiling Detector (PTD) is a Matlab6 program that detects the fundamental domain of an input 
image. The basic idea behind PTD is as follows: a combination of translation and scaling symmetries are 
used to compare adjacent squares of increasing size in the image. A global comparison algorithm that 
incorporates the best fit determines the optimal size and a pair of squares that are most similar. This 
determines the horizontal periodicity in the image. This is repeated on the transpose of the image to find 
the vertical periodicity. (Please see Appendix 1 for a simplified version of the psuedocode.) 

Here we describe the types of noise PTD can robustly handle in an input image. Figure 3 is an C 
input image artificially generated by [27] that has sections missing, noise inserted, and differing levels of 

6 Matlab© is the software package for scientific computation available from MathWorks Inc. 
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blur. Figure 4 is PTD~s reproduction of the tiling. Despite all the distractions in the input image, PTD 
was able to reconstruct the original image. 

Figure 3 Noisy Input Image Figure 4 PTD Reproduction 

Figure 5 is a photograph of a tiling. The image is slightly skewed, which is easily seen when 
looking at the lower left comer .. Additionally, the light colored sideways triangles are quite different from 
each other. Figure 6 shows PTD's replication of the image. While the input image is slightly tilted, the 
replication is not, as it can be seen by comparing the lower left comers of Figures 5 and 6. 

Figure 5 Photograph of a Tiling Figure 6 PTD Reproduction 

Here are several situations that are not handled well by PTD, as well as a brief description of a 
possible remedy. Some points that will be enhanced in the forthcoming versions of the software are as 
follows: 
Detecting Non-Periodicity. Thus far the program is not equipped to alert the user when an input 
image probably does not have periodicity. This could be remedied by doing a study of the error 
rate of periodic and non-periodic images (see the following section on an evaluation metric). 
Noise in Upper Left of Image. Currently PTD uses the upper left comer squares to get correlation 
measures. If the upper left comer is noisier than the rest of the image, the correlation results could be 
meaningless. This could pos~ibly be resolved by starting PTD from several points in the input image, not 
just the upper left. 
Non-Rectangular Lattices. Because PTD uses adjacent squares for correlation, it does not detect 
periodicity in images that cannot be tiled with rectangles7 parallel to the x-axis (see Figure 7). This type 
of problem may be solved with Principal Component Analysis (briefly described later in the paper). 

7 More technically, the parallelograms which make up the tiling's lattice are not necessarily rectangular. 
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Figure 7 This image clearly has periodicity; however, there is no 
rectangular subset of the image that could recreate the entire image by tiling. 

PTD Does Not Model Human Vision Process. The results of PTD are comparable to human perception; 
it is difficult to tell the difference between Figures 5 and 6. However, PTD's current algorithm is not 
likely to closely model actual human perception. A future version that models saccades, for instance, is 
biologically closer to a more accUrate model. 

Section Four: A Metric for Evaluation of Computational Models 

A metric for evaluating the output of PTD is necessary in order to expand the algorithm to indicate when 
an input image is not likely to contain a periodic tiling (see Section Five). For the experiments described 
in this paper, the metric used was: 

mean( standard_deviation_oCcolumns(Inputlmage - PTD _Reproduction». 

A method for evaluating the robustness of PTD is to add an increasing amount of noise to an 
image to determine when PTD is no longer able to detect a tiling. Figure 8 is a polka-dot pattern with 
Gaussian noise added8, and Figure 9 shows the PTD reproduction at 23 iterations. Mter 23 iterations of 
adding noise, the error metric rose above 90 and PTD's performance began to decline. At 35-40 
iterations of adding noise, the input image became too noisy for a human observer to determine the 
regularity. 

There is a statistically well-defined threshold of noise at which the computational model fails to 
reliably detect the regularity of a tiling pattern in an image. We propose to follow up our research with 
psychophysical experiments to evaluate the above-mentioned computation threshold versus a similar 
human threshold for the same set of images. 

8 Each iteration applied zero mean Gaussian noise with 0.01 variance to the input image. 
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Input image containing 
Gaussian noise. 

Figure 9 PTD Reproduction 

Figure 10 Avg. Standard Deviation Metric (y-axis) vs. Images Containing an 
Increasing Amount of Noise (x-axis) 

Section Five: Work in Progress and Future Research 

An alternative and complimentary method for discovering the fundamental domain of symmetries can use 
the methods of Principal Component Analysis. In the principal component transformation approach one 
is initially given a n X p matrix X of discrete observations - n observations of p variables. Let X*i and 
Xj* be the ith row and jth column vector respectively. In general, the p vectors are not independent and 

we seek a subset of s vectors that contain the same information as X - that is an n X s set of so-called 
feature vectors. If the relationship between the observed vectors and feature vectors is linear (with 
possible noise) then PCA can be used. 

Briefly, let XX T = UAU T be the singular value decomposition of XXT where A is the diagonal 
matrix of eigenvalues ai • The principal component transformation is given by R = XU. Columns of U 
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represent the principal directions and the direction corresponding to the maximum eigenv.alue a; has 
maximal variance. Each aj represents the variance along the jlh principal direction represented by the jib 
column of U.·· Properly chosen samples of the image represent vectors of the sample matrix X. Since X 
has symmetries, the actual dimension of the feature space is less than the sample spaceX. If assumption 
about noise and the relationship of the feature and sample space are met, the fundamental domain can be 
recovered as principal components of the sample. We remark that special cases of computational 
modeling of symmetry perception are studied by other authors, e.g. [10, 28] and their relevant references. 
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Appendix 1: Psuedocode for PTD 

/* Image I of width d[2] and height d[l] is presented */ 

d[2] = width_oUmage 
d[l] = heighCoCimage 
z = max(d[2],d[1]) 
w = initialize_to_max_float(z) Ilw is an array of size = max( d[2],d[ I]) 
num_select = 25; 
w2 = initialize_to_max_float(num_select) 
1 = initialize_to_max_float(2) 1/1 is an array of size = 2 
sample_size = 2 

for j = 1 'to 2 do 

end 

return(l) 

I = transpose(I) II First loop finds best vertical periodicity, 
II second loop finds best horizontal 
II periodicity. 

II First for loop: Incrementing the size of the square, record how much alike the 
II upper left two adjacent squares are as the size increases. 
for k = sample_size to d[j]/2 do 

end 

square = I(1:sample_size, l:sample_size) 
111(1 :s,1 :s) is a square of size s in upper 
II left comer. 

square2 = 1(1 :sample_size, sample_size+ 1:2 *sample_size) 
Iffhe adjacent square 

w[k] = distance_measure(square,square2) 
Ilmeasure difference in some metric 

[Index, w] = sort(w, "Ascending") II Sort results in ascending order. 
Illndex[i] is an array element that stores the square size that is associated 
Ilwith the measure in w[i] after sorting. (The square size is the same 
II thing as sample_size from each increment.) 

II Secondfor loop: Find out which of the top-scoring squares best describes 
II the periodicity of the image. 
for k = 1 to num_select do 

strip = 1(:, l:Index[k]) II A strip that has the same width as the i'h 

Ilbest scoring square. 
o = tile(strip,I) II Tile with strip to create an image of size 1. 
w2[k] = distance_measure(O,I) 

end 
w2 = sort(w2, "Ascending") 
l[j] = w2[1]; 
w = initialize_to_max_float; 

II Sort results in ascendin,g order. 
II Select the smallest value. 
I/Reintialize. 

II I contains the size of the rectangle 
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