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Abstract 

BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

Human creativity relies to a large part on our ability to recognize and match patterns, to transpose 
these patterns into different domains, and to find analogies in new domains to known facts in old 
domains. In the realm of geometrical proofs and geometrical art, such analogies can carry concepts 
and methods from spaces that are easy to deal with, e.g. drawings in a 2-dimensional plane, into 
higher dimensions where model making and visualization are much harder to carry out. Students in 
a graduate course on geometric modeling are challenged with open-ended design exercises that 
introduce them to this analogical reasoning and, hopefully, enhance their creative thinking abilities. 
Examples include: constructing a Hilbert curve in 3D-space, finding an analogous constellation to 
the Borromean rings with four or more loops, or developing 3D shapes that capture the essence of 
the 2D Yin-Yang figure or of a logarithmic spiral. The proffered solutions lead to interesting discus
sions of fundamental issues concerning acceptable analogies, the role of symmetry, degrees of free
dom, and evaluation criteria to compare the relative merits of the different proposals. In many 
cases, the solutions can .also be developed into attractive geometrical sculptures. 

(a) (b) (c) 

Figure 1: a) Borromean Rings, b) Hilbert Curve, c) Yin-Yang. 

1. Introduction 

Where does creativity come from? What is "good design"? How do we know that we have a "solution" to 
a design problem? These are some questions behind the design exercises that I will discuss in this paper. 

The human mind is good at discovering patterns. One might argue that human intelligence and creativ
ity relies to a large extent on our ability to recognize patterns and match them with previously stored pat
terns. We easily see animal shapes and faces in clouds, or goblins and ghosts in tree trunks at night in the 
forest. We are intrigued by star constellations if they approximate regular triangles or quadrilaterals, or if 
they lie on a roughly circular arc. We also recognize and enjoy the regularity in tiling patterns. Often we try 



162 Carlo H. Sequin 

to explain the patternli in one domain with patterns from another domain. For example, Kepler tried to 
explain the relative sizes of the planetary orbits with the suitably nested circumspheres of the Platonic sol
ids (Fig.2), and there were attempts to draw the periodic table onto simple geometrical objects such ascyl
inders. Often we use analogies to try to explain a new and unfamiliar domain with a model from a well
understood and intuitively plausible domain; as an example, the model of water flowing over a dam of 
adjustable height has been used to explain the operation of an MOS field effect transistor [8]. 

Figure 2: Kepler's attempt to explain the ratios among planetary orbits 

I believe that one's creativity and imagination can be improved by training one's ability to find such 
analogies. This is why I include such exercises in almost every course I teach at D.C. Berkeley. I try to 
improve the students' design skills by raising to a conscious level sequences of thoughts and associations 
that appear in the search for a solution. We ponder questions such as: What is going on in the design pro
cess? Where do good ideas come from? What can we do to enhance the flow of good ideas? When do we 
know that the design is done? 

In my graduate courses on geometrical modeling and computer-aided design, these kinds of questions 
and the corresponding exercises that I discuss in this paper often involve an inductive step going from a 2-
dimensional form to a related 3-dimensional shape, or from a configuration of n elements in a highly sym
metrical arrangement to a constellation of n+ 1 and more such elements. Each problem was first solved to 
my own satisfaction to gain an idea of its possibilities and difficulty. I then clarified the design task and 
curtailed the solution space so that a structured exercise resulted. Typically, these tasks are attacked by the 
students in two waves: First they are simply given the short, open-ended problem statement and are asked 
to think about it and bring their ideas and questions to the next class. In a joint discussion we then agree on 
the salient features that the solution should have and identify some criteria by which we could judge the 
quality of the various designs. In spite of the stated constraints and of the focussing effect of our discus
sions, I normally have the pleasure to obtain new and unexpected solutions that add to the richness of the 
problem and transcend the previously known solutions. Often I find out later that others had pondered the 
same questions, and sometimes even wrote a whole book about related issues - as in the case of the 
delightful book "Orderly Tangles" by Alan Holden [6]. Since the exercises often lead to artistically inter
esting and pleasing results, they should be particularly well suited for this conference, bridging the gap 
between logic and the arts. 
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2. Hilbert Curve 

An exercise that dates back to 1983 [9,10] asks the students to develop a 3-dimensional, recursive, self
similar, space-filling, piece-wise linear path inspired by the 2D Hilbert curve [5] shown in Figure lb. This 
Peano curve, which in the limit fills the unit square, was discovered in 1891. It can be nicely described by 
a recursive procedure. The problem statement makes it implicitly clear that we want the new curve to visit 
all the grid points of a cubic array with 2n x 2n x 2n points so that no grid point has more than two line seg
ments attached to it. The basic approach is fairly obvious: The overall cube is split into eight equal octants 
which are visited in a particular sequence. These octants are split into octants again, which are then visited 
in the same geometric order. All the interesting issues lie in the details! 

After the students have pondered the question for a while, we start discussing desirable criteria that one 
might use to rank-order different designs. For instance, the higher-order Hilbert curves should maintain the 
symmetry of the starting frame, and that symmetry should be as high as possible. The 3D solution may 
well have more symmetry than the 2D curve. To achieve that goal,we might want to modify the top level 
of the recursion in the original Hilbert curve so that it forms a closed loop, thus introducing a second axis 
of mirror symmetry and leading to a prominent "H" in the second generation (Fig.3a). Other aesthetic con
siderations may suggest that the extra-long line segment of three unit lengths occurring near the center of 
the 3rd-order planar curve should be avoided. Ideally one might want to avoid even two subsequent col
linear line segments. Similarly, one might want to minimize the number of subsequent elements that lie in 
the same plane. While three subsequent coplanar segments cannot be avoided, if we want to visit all eight 
corners of a unit cube, sequences of more than three segments may be avoidable. Ideally we would like to 
find a simple recUJ,"sive formulation for such a structure. 

(a) (b) (c) 

Figure 3: a) Closed 2D Hilbert curve, b) 3D Starting/rame, c) comer element/or 2nd generation curve. 

A plausible starting frame consists of the closed loop shown in Figure 3b. To use this frame as the 
basic corner element at the next level, one ofits eight segments, i.e., the dark one in the lower part of Fig
ure 3b, must be opened up, and two new connections to adjacent, identical corner elements must be created 
by suitably twisting the L-elements that were formerly attached to it (Fig.3c). To construct the second gen
eration of the 3D Hilbert curve (Fig.4a), we place eight such modules, reduced to half-size, into the eight 
octants of the original cube. They have to be properly oriented, and some units have to be mirrored (shown 
darker in Fig.4a) sothat they can be connected readily with their neighbors. This should be done in such a 
way that a closed path results that basically follows the path of the original frame (Fig.3b). I have built a 
physical implementation of such a second generation structure from 64 plastic 3/4-inch pipe corner pieces. 
The problem with constructing larger physical structures lies in the fact that, regardless of the level of 
recursion, two halves of the sculpture are connected only with either two or four pipe segments, which ren
ders the physical structures rather weak. On the other hand, in the virtual space of computer modeling, the 
process can be continued without limits using ever smaller copies of the original module. The basic design 
can then be turned into an impressive virtual sculpture with a suitable choice of pipe dimensions, texture, 
and coloring (Fig.4c). 
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For Hilbert curves of order three and higher, some interesting choices have to be made. I was able to 
design a 512-segment 3D pipe in which there are never more than three coplanar line segments. However, 
I had to start with a different corner element for the 2nd-generation curve. Rather than removing the dark 
segment in the base frame (Fig.3b), I chose to remove one of the elements adjacent to it (of which there are 
four to start with) and to orient the connecting L-pieces so that they turn away from the plane last visited 
inside. the base-frame. These corner elements now show C2 symmetry around the mid-point of their middle 
segment, and they can now be properly oriented in all eight corner positions to form a 2nd-generation 'Hil
bert path (Fig.4b). To produce the corner element for the 3rd generation, we again break open a segment 
near one of the corners and suitably twist the adjacent L-elements outwards. This unit can then be assem
bled into a symmetrical closed loop with carefully chosen orientations and mirroring operations. The draw
back of this solution is that the connection operation needs to modify one of the lowest level corner 
elements, thus a simple recursive composition of eight identical corner elements is not possible. 

(a) 

(b) 

Figure4: (a), b) 2nd- and c) 3rd-generation virtual 3D Hilbert pipes, with 64 and 512 pieces respectively. 

The solution presented in Figures 4a,c, has the same basic symmetry, but it exhibits sequences of four 
subsequent coplanar pipe segments; on the other hand, I was able to describe it with a nice recursive for
mulation. If a closed curve is desired, then one has to change the orientations of the first and last corner 
elements at the top level of the recursive procedure. The approach generalizes to higher dimensional cubes 
[3]. The initial starting frame can always be seen as an n-bit reflected Gray code which runs through all 
permutations of an n-bit string in such a way that each string differs from its predecessor in only a single 
bit. Scaled-down versions of this traversal of the starting frame are then placed - with suitable orientation 
- into each "corner" of the original hyper-cube. 
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3. Symmetrical Constellations of Interlocking Loops 

Two tightly intertwined rings form a simple yet intriguing configuration that seems to have symbolic 
meaning in several cultures (Fig.5a). An attempt to place three loops in space as compactly and as symmet
rically as possible, leads to an l;lITangement known as the Borromean rings (Fig.la, Fig.5b). Individual 
pairs of rings are not actually interlocked; the configuration only holds together when all three rings are 
present. However, when we try to place three perfectly toroidal rings into a constellation of high symmetry, 
the result is a pairwise interlocking configuration with three-fold symmetry (Fig.5c). 

(a) (b) (c) 

Figure 5: a) Two interlocking rings, b) tight Borromean configuration, c) three interlocking ring pairs. 

Next, we aim to cluster more than three rings around the origin, without much concern whether indi
vidual pairs of rings mutually interlock. The task given to the students was to find a constellation of four 
loops with the highest possible symmetry. Every loop should be in an identical position within the constel
lation, so that the basic symmetry operations transpose anyone loop into any other loop. 

If one has not seen the solution beforehand, this problem turns out to be surprisingly difficult. Two 
approaches have proven helpful to guide the students to finding a solution. The first one is to ask what 
symmetry groups one might possibly expect. After some contemplation, one finds that with four rings it 
has to be the tetrahedral or the octahedral group. The second approach starts with the notion that one might 
want to interlock four triangles. The choice of triangles to represent the loops seems natural, because each 
loop has to interact with three other loops, and if we want to do this in a symmetrical manner, we should 
choose a: loop with 3-fold symmetry. Given that we want to place four triangles symmetrically in 3D space, 
we need to define the positions for twelve vertices - in a symmetrical manner. So the question then turns 
to how one can place twelve vertices uniformly and symmetrically onto the surface of a sphere. The insight 
to this secondary problem might come from thinking about the densest sphere packing, or from contem
plating the Platonic and Archimedean solids and looking for the occurrence of the number 12 - preferably 
in an object with tetrahedral or octahedral symmetry. When I initially contemplated this problem, I first 
thought of the twelve edges on a cube. So I placed the vertices at the midpoints of these edges and con
nected them into 4 triangles - and the solution emerged almost immediately (Fig.6a). 

I implemented this configuration as a physical sculpture from 4-inch cardboard tubes [9], spray
painted with copper enamel on the outside, and with a touch of fluorescent yellow near its center- which 
made the sculpture glow on the inside when hit with indirect sunlight (Fig.6b). It should be pointed out, 
that in this arrangement every pair of triangles mutually interlocks; cutting away one triangle would still 
leave the other three entangled. Also, the topology of Figure 6b is the mirror image of that of Figure 6a. 

I continued my quest by looking for constellations of five and more intertwined loops. For five loops, 
an extension of the process that had helped me find the 4-triangle structure was employed - i.e .• I tried an 
inductive approach. Each of the five loops would have to interact with four others, thus using squares 
seemed like a reasonable start. This then required twenty vertices positioned symmetrically in space. The 
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twenty vertices of the pentagon-dodecahedron offered themselves conveniently, and it did not take long to 
find a grouping of. the vertices into four planar polygons - which however were rectangular rather than 
square (Fig.6c). Also the resulting constellation does not carry the full symmetry of the Platonic solid from 
which it was derived, it just has one axis of 5-fold symmetry (C5) and five axes of C2 symmetry. 

(a) (c) 

Figure 6: a) Four symmetrically clustered loops, b) physical realization, c)jive "Borromean" rectangles. 

It is interesting to study the interlocking pattern of this structure. No two rectangles interlock! It looks 
like a more complicated Borromean arrangement in which each loop surrounds exactly two other ones in a 
cyclical relationship. Encouraged with this result, we might try again to look for a Borromean arrangement 
with four loops. However, a little conceptual reasoning will soon let us see the difficulty of this quest. Let's 
use the notation A ~ B to indicate that loop A encircles loop B on the outside. Thus the Borromean rings 
have the cyclic relationship indicated in Figure 7a. If we try to draw a similar diagram for the 4-ring con
stellation, then we run into the difficulty that in a complete graph with four vertices, there are three edges 
joining at each vertex; thus the number of incoming and outgoing arrows cannot be made the same every
where. To draw a symmetrical diagram in which all vertices are identical, we would have to use double
headed arrows, which we can interpret as an indication that the two rings (vertices) connected by such a 
double arrow are mutually interlocking (Fig.7b). On the other hand, the complete graph with five vertices 
has four edges joining at every vertex, and we can readily draw such a graph with two incoming and two 
outgoing arrows at each.node (Fig.7c). This corresponds to the configuration of five loops discussed above 
and shown in Figure 6c. 

A 

/\ 
c'" B 

(a) (b) (c) (d) 

Figure 7: Interlocking schemes: a) Borromean rings, b) 4 rings, c) 5 rings, d) 4 "Borromean" rings 

Before I had a chance to push my quest much beyond the constellation with five rings, I stumbled onto 
the delightful book "Orderly Tangles" by Alan Holden [6]. This is an invaluable resource containing doz
ens of such symmetrical, interlocking constellations with as many as twenty loops. Figure 8b shows a com
puter simulation of a tangle with ten triangles inspired by a model built by Holden. In this case, the vertices 
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of the triangles lie on the midpoints of the thirty edges of the dodecahedron. The inductive reasoning out
lined above for the steps from three to four and then to five loops can be continued. Once one understands 
the search procedure, it is not too difficult to find the more complicated tangles. 

(a) (b) (c) 

Figure 8: a) Four "Borromean" triangles, b) ten interlocking triangles, c) tangle offive tetrahedra (SLS). 

Holden's book also contains a Borromean configuration formed by four triangles; its linking logic cor
responds to Figure 7d, and it is realized by a 3-ring Borromean configuration that rigidly holds in place a 
fourth, non-entangled triangle (Fig.8a). Holden also shows how such symmetrical tangles can be carried 
beyond just simple loops; he shows models of interlocking tubular tetrahedral frames. Another realization 
of the classical tangle of five tetrahedra with all 20 vertices lying at the comers of a dodecahedron is shown 
in Figure 8c. This part has been constructed with Selective Laser Sintering (SLS), one of the emerging lay
ered Solid Free-Form (SFF) fabrication technologies [7]. 

4. Yin-Yang 

Yin-Yang symbolizes the two complementary forces that comprise the Tao, the eternal dynamic way of the 
universe: Yin is the earthly, dark, passive, or female principle. Yang is the heavenly, light, active, or male 
force. Geometrically, the Yin-Yang symbol divides a circle into two complementary halves that in some 
sense are "opposites" of one another. The task given to the students was to find a corresponding partition
ing of a sphere in 3-space. The richness of the solutions proposed by the students in the Fall 1997 course 
CS 285, Solid Free-Form Modeling and Fabrication, was unusually rewarding (Fig.9,1O). 

(a) (c) 

Figure 9: Various solutions to constructing a 3D Yin- Yang. 
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The most often proposed solution was a sphere cut into two halves with a "band-saw" following the 
path of the 2D Yin-Yang dividing line. Some solutions were offered as clay models (Fig.IOa), others as 
machined parts (Fig. I Ob), or as sophisticated computer renderings (Fig.1Oc). While I feel that this is not 
the best solution, since it is just an extruded extension of the 2D figure, this is also a shape celebrated by 
great artists such as Max Bill (Fig.1Od). 

(a) (b) 

(c) (d) 

Figure 10: The most pervasive solution for a 3D Yin- Yang: A cut with a S-shaped developable sUrface. 

Still, I was more intrigued with attempts to cut the sphere with a surface that curves in both directions. 
A key question then arises: should the two halves be identical or mirror images? The most innovative pro
posal came from a couple of students who reasoned, that the true analogy of going from 2D to 3D 
demanded that the sphere be cut into three identical parts - possibly colored with the three primary colors 
red, green, blue. 

(b) (c) 

Figure 11: Yin-Yang symmetry groups: a) mirroring, b) cyclic rotational, c) glide plane reflection. 



Analogies from 2D to 3D - Exercises in Disciplined Creativity 169 

The crucial characteristics to order and classify this plethora of shapes is the symmetry of the surface 
that divides the sphere. The following fundamental possibilities exist: The trivial solution cuts the sphere 
with a plane through its center; but this does not exhibit any features of the Yin-Yang icon. A more interest
ing class of dividing surfaces has C2 symmetry with respect to some axis through the sphere center; this 
results in two congruent halves (Fig.9a,b). The "band-saw-cut" solutions (Fig. 10) also fall into this class. A 
generalization allows C3 symmetry around this axis and would thus cover the case of three identical sub
components. The third and, to me, most interesting class, has glide symmetry, which brings the dividing 
surface back onto itself when it is rotated 180 degrees and then mirrored on a plane perpendicular to that 
axis; this leads to complementary mirror-parts (Fig.9c). This shape is most defensible on philosophical 
grounds; we want to create two halves that are not identical but rather complements of one another. The 
most beautiful formulation of such a shape (Fig.12a) is composed of three spherical surface pieces and two 
cyclides [2]. This shape was also discovered by C. E. Peck in 1992. 

(b) 

(a) 

Figure 12: 3D Yin-Yang models with mirror complements: a) eyelid-based, b) torus-based. 

Attempts at machining such a shape on a milling machine run into the problem, that the part shows a 
concave groove that leads into a point with infinite curvature, which cannot be cut with any tool of finite 
dimension. The 2D Yin-Yang has constant curvature and uses only circles of two radii that differ by a fac
tor of two. I found a corresponding solution in 3D that replaces the two cyclid surfaces with two tori in 
which the major radius R is twice the size of its minor radius T. This shape can readily be described as a 
Boolean expression of its five curved shapes and a few half-planes. The resulting shape is shown in Figure 
12b, and an early attempt at machining it on a milling machine in Figure 12c. 

5. Spiral Surface 

The logarithmic spiral (Fig. 13 a) is a fascinating curve, and may be considered the ultimate solution to self
similarity at arbitrary scales. As in the first problem dealing with the Hilbert curve, we might ask what an 
analogous curve through 3D-space might look like. One might argue that a 3D spiral curve should (eventu
ally) pass through all possible directions emerging from the origin of the coordinate system, and, at the 
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same time, gradually move outwards at an exponential rate. The problem of visiting all points on a sphere 
with a continuous smooth path has been addressed by Dan Asimov's "Grand Tour" [1], which, given a long 
enough time span, will approach every point on the surface of a sphere with arbitrary closeness. All we 
have to do, is to let the radius grow exponentially as a function of time. 

However, the task we want to focus on here, is to find a surface that captures the spiral properties. Ide
ally, we would like to obtain a spiral intersection curve whenever the surface is cut with an arbitrary plane 
through the origin - however, this would be asking for too much! But can we get spirals in at least three 
cutting planes that are mutually perpendicular to one another? 

(a) (c) 

Figure 13: a) Logarithmic Spiral, b, c) emerging pipe~cleaner skeleton. 

This problem has not been presented to any student yet. The way I approached it myself was to make a 
wire skeleton from pipe cleaners (Fig.13b) that contained the three coordinate axes (black) and three spi
rals in the three main coordinate planes (white). Additional pipe cleaners (grey) produced some connectiv
ity among these spirals and formed partially spherical shells (Fig. 13c). It became clear that it was not 
possible to connect all spiral branches smoothly with one another; some jumps from one "onion shell" to 
another had to occur. Thus the surface cannot be totally closed. It turns out that this is a useful feature, 
since it would be rather dull, if we could not view the internal structure of this surface. Later it became 
apparent that the edges that had to be introduced to avoid the discontinuous jumps from one shell to the 
next inner/outer one could themselves take on the shape of spirals. What serendipity! 

(a) 

Figure 14: a) Spider pattern with patch subdivision lines, b) paper model of Spiral SUrface. 
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One emerging solution exhibited D3-symmetry along the {Ill} space diagonal in the coordinate sys
tem in which I had placed the original three spirals; and it showed six openings with helical edges leading 
inwards toward this axis. At this stage, I started to build paper models to get a better feeling for the surface 
topology itself. I designed th~ spider pattern shown in Figure 14a and made several suitably scaled copies. 
These were joined together in a nested manner, where the long arms of one spider join the short arms of the 
next larger spider. The result is shown in Figure 14b. 

Subsequently this surface was modeled on the computer. Using three Bezier patches to form the shape 
of one "L" with a 60-degree corner, it takes 18 patches to compose one complete spider (Fig.14a). The 
boundary constraints to guarantee smooth continuation of the patches are not hard to derive; and the inner 
control points of the cubic patches are adjusted to minimize any apparent bumps. Finally, Jane Yen added 
highlights and shadows and rendered that surface (Fig.15a) with the Blue-Moon Rendering Tools [4]. The 
next step is to make the surface thicker and to derive a solid description from which a 3D model can then 
be built with one of the layered Solid Free-Form (SFF) fabrication techniques [7]. 

(a) (b) 

Figure 15: a) Virtual model of Spiral Surface, b) half that surface showing spiral curve in cross section. 

6. Discussion and Conclusions 

The design exercises discussed in this paper are a good example of an activity that bridges the realms of 
logical reasoning on the one hand, and of intuitive and even artistic contemplation on the other. The region 
between art and mathematics is particularly suitable to study the creative process on (somewhat) open
ended design problems. The problem statements are loose enough to allow the mind to roam free and to 
come up with potentially wild and unorthodox solutions. At the same time, these geometrical puzzles pos
sess enough structure and quantifiable properties so that one can apply an acceptable metric to the results 
and rank-order different solutions. This process brings wild, far-flung, non-sequitur creativity into a more 
disciplined mode where there are design solutions of defensible quality. 

The presented problems start with the construction of a simple one-manifold, the 3D Hilbert curve, 
where connectivity, symmetry, and a recursive formulation are the dominant concerns. The subsequent 
tasks increase in complexity, adding topological considerations of linking behavior, and evolving from 
one-manifolds (curves) to two-manifolds (surfaces). 
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The methods employed to tackle these problems vary, but a dominant role is played by inductive rea
soning and a judicious use of symmetry. The key challenge of the 3D Hilbert curve is to find a recursive 
formulation to build a generic corner element with the desired connection properties at the corners so that 
the connectivity among the eight octant cuboids stays the same in each generation. In searching for orderly 
tangles of interlocking loops, it was most productive to determine the expected symmetry group, and then 
place a suitable number of vertices evenly onto the surface of a sphere so as to span the polygonal imple
mentations of the loops. For the two surface-related problems, paper and pencil, or even computer draw
ings did not seem adequate to explore the potentially very large solution space. The use of clay, wire-mesh, 
and/or pipe-cleaners seemed to help a lot in the visualization of the problem and its possible solutions. 

What all the solutions have in common is that the "best" solutions in terms of maximum analogy with 
the starting shape also have a high aesthetic appeal by themselves - which adds a special bonus to these 
exercise tasks. This bonus becomes even greater with the advent of solid free-form (SFF) manufacturing 
technologies that allow to turn these virtual design artifacts into nice physical sculptures. 
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