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1. Introduction 

The Yale art historian George Hersey showed us the columns in Figure 1 and asked us whether the 

ideas of symmetry breaking could be used to help classify architectural columns. Provoked by this 

question and the intriguing columns in that figure, we attempted to answer Hersey in the following 

way. We view a column as a deformed cylinder and column symmetries as the subgroup of the 

symmetries of the cylinder that preserve the column. 

Figure 1: Plate xv from G. Guarini [3]. (Left) Fluted column (see Figure 4). (Right) Spiral column 

with k » 1 (see Figure 5). (Center) Spiral column with k = 1. See Table 2 for a definition of k. 

More precisely, we think of a column as a function on a cylinder (either finite or infinite) where 

the function tells us how far to deform the cylinder in the direction normal to the cylinder. The 

symmetries of a column are then the symmetries that preserve the level contours of the function, 
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that is, the isotropy subgroup of the defining function. In this paper we present the mathemat-

ical classification of the 29 different types of column symmetry. We note that there is a related 

classification of the rod groups that corresponds to the columns with discrete symmetry. See [1]. 

In a companion paper [2], written with George Hersey, we discuss the question of column sym

metry from a historical perspective and attempt to describe the implications of our mathematical 

classification. The classification theorem is stated and proved in Section 2. Level contours (drawn 

on a flattened cylinder) of representatives of the twenty-eight nontrivial column symmetry types 

are presented in Section 3. 

2. Symmetries of Columns 

We imagine a column to be a real-valued function f on the cylinder C = 8 1 X R. Let (<p,z) E C. 

The function f(<p, z) measures the height of the column in the direction normal to the cylinder at 

the point (<p, z). 
The group of symmetries of the cylinder is 

where r acts on (<p, z)' E C by 

(O,t)(<p,z) = (<p+O,z+t) 

T(<p, z) = (-<p, z) 

/'i,{<p, z) = (<p, -z). 

(0, t) E 80(2) 61 R 

Multiplication in r follows from the definition of the action. Suppose that (Aj, (OJ, tj)) is in r 
for j = 1,2, where Aj E D 2 , OJ E 80(2) and tj E R. Then multiplication is given by 

{2.1} 

We wish to classify columns by their symmetries. A symmetry of the column f : C --t R is 

I E r such that 

fb((/), z)) = f(<p, z) V(<p, z) E C. 

The symmetry group L: fer is the collection of all symmetries of f. We classify all subgroups L: 

which are symmetry subgroups for some column f. 
Our classification proceeds as follows. To each subgroup L: c r, we can associate the normal 

subgroup 

L:o = L: n (80(2) 61 R). 

(So L:o consists of the pure 'translations' in L:.) Thus it suffices to 

(i) classify the closed subgroups L:o of SO(2) 61 R, 

(ii) for each subgroup L:o in (i), compute the subgroups L: c r that satisfy {2.2}. 

(2.2) 
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The calculation in (ii) is simplified by observing that E is contained in the normalizer of Eo. 

As usual, we identify conjugate subgroups of r. In addition, we identify subgroups that are 

related by axial scalings. More precisely, we define the scaling transformation Sa : r -t r by 

sa(A,8,t) = (A, 8, at), (A,8, t) E r. 

Provided a '# 0, this is an isomorphism. We say that two subgroups E, E' are related by a scaling 

if saE = E' for some nonzero a. 

2.1. Classification of Subgroups of SO(2) EB R. 

In this section, we classify the closed subgroups of SO(2) EB R up to scaling and conjugacy in r. 
Also, we compute the normalizers of these subgroups in r. 

Lemma 2.1 Suppose that C is a compact subgroup of SO(2) EB R. Then C c SO(2) EB 1. 

Proof: If (8, t) E SO(2) EBR and t '# 0, then (8, t) generates a noncompact subgroup of SO(2) EeR 

(isomorphic to Z). It follows that (8, t) ¢ C. • 

Proposition 2.2 Suppose that G is a closed connected subgroup of SO(2) EB R. Then, up to 

conjugacy and scaling, G is one of the subgroups 

SO(2) EB R, SO(2) EB 1, 1 EB R, L, 1, 

where 

L = {(t, t) E SO(2) EB R: t E R}. 

Proof: If dimG = 2, then connectivity implies .that G = SO(2) EB R. If dimG = 1, then 

connectivity implies that G is group isomorphic to either SO(2) or R. In the first case, it follows 

from Lemma 2.1 that G = SO(2) EB 1. In the second case, there is a smooth isomorphism h : R-t 

G C SO(2) EB R. This isomorphism is given by h(t) = (80t,aot) for some (80 ,ao) E SO(2) EB R 

(defined as h(I)). By assumption ao '# 0. If 80 = 0, then G = 1 EB R. If 80 '# 0, then by axial 

scaling we can arrange that ao = 80 and G == L. • 

From now on, we use the abbreviations R = 1 EB Rand SO(2) = SO(2) Eel. The proper 

closed subgroups ofSO(2) are given by Zk, k ~ 1: the subgroup of rotations of the cylinder through 

angles which are multiples of 21r/k. In addition, we set Z C R to be the subgroup of unit axial 

translations of the cylinder generated by the element (0,1) E SO(2) EB R. Finally, for any w E R, 

we define 

N~ = {(wn, n) E SO(2) Ee R : n E Z}. 

Of course, No = Z. 

Theorem 2.3 .Up to axial scaling and conjugacy, the closed subgroups Eo C SO(2) EB R are listed 

in Table 1. 
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dim Eo Eo H 

2 80(2) EB R D2 
1 80(2) D2 

80(2) EB Z D2 

ZkEBR D2 
Zk EBL Z2(Tli:) 

0 Zk D2 

ZkEBZ D2 

Zk EB N w O<w<7r/k Z2(Tli:) 

Zk EB N 7r/k D2 

Table 1: Classification of closed subgroups Eo C r up to scaling and conjugacy. The normalizers 

are given by N(Eo) = H EB (80(2) EB R) 

Proof: Since Eo is abelian, we can write Eo ~ C EB ZP EB Rq where C is compact and p, q ~ O. 

Clearly, p + q ::; 1. By Lemma 2.1, C = 80(2) or C = Zk. 

Assume that C = 80(2). Since 80(2) EB R is connected, the only subgroup satisfying dim Eo = 

2 is Eo = 80(2)EBR. Suppose next that dim Eo = 1. We claim that Eo = 80(2) or Eo = 80(2)EBZ. 

Choose the smallest positive t E R such that there is 9 E 80(2) with (9, t) E Eo. Since (9,0) cEo, 

it follows that Eo = 80(2) EB tZ, where tZ is the subgroup of 80(2) EB R generated by (0, t). By 

making an axial scaling, we can set t = 1 so that Eo = 80(2) EB Z. 

Now assume that C == Zk. If dim Eo = 1, then it follows from Proposition 2.2 that Eo = Zk EB R 

or Eo = Zk EB L. If dim Eo = 0, then either Eo = Zk or Eo ~ Zk EB Z. In the latter case, we can 

choose a generator (a, b) E Z C 80(2) EB R with smallest b> O. Making an axial scaling, we can 

suppose that the generator is of the form (w,l) for some w E R. In other words, Eo = Zk E9 N w • 

Note that Zk EB N W+27r/k = Zk EB N w, so we can suppose that Iwl ::; 7r/k. Using formula (2.1) we 

compute that 

r· (wt, t) . r-1 = (-wt, t), 

where r· (wt, t) is an abbreviation for (r, (0,0»· (1, (wt, t». Hence up to conjugacy, we may suppose 

that w ~ O. The case w = 0 is the distinguished case No = Z. • 

Proposition 2.4 The normalizers of the subgroups Eo C 80(2) EB R have the form 

N(Eo) = H +(80(2) EB R), 

where the subgroup H C D2 is as given in Table 1. 

Proof: Since 80(2) E9 R is abelian, it is clear that 80(2) EB R c N(Eo). Hence N(Eo) = 

H+(80(2) EB R) for some subgroup H C D2. We compute that A· (9, t) . A-1 is the element 

A(9, t) E 80(2) EB R. Hence, H consists of those elements A E D2 that preserve ~o. The element 
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~o ~ 

SO(2) EB R r 
80(2) Z2(r)+80(2) D2+80(2) 

80(2) EB Z Z2(r)+(80(2) EB Z) D2+(80(2) EB Z) 

ZkEBR Z2(K)+(Zk EB R) D2+(Zk EB R) 

Zk EBL Zk EBL Z2(rK)+(Zk EB L) 

Zk Zk Z2(r)+Zk Z2(K) EB Zk 

Z2(rK)+Zk D2+Zk 

Zk EB N w 0'5: w '5: 7r/k Zk EBNw Z2(rK)+(Zk EBNw ) 

Zk EBZ Z2(r)+(Zk EB Z) Z2(K)+{Zk EB Z) D 2+(Zk EB Z) 

Zk EB N 7r/k Z2(r)+(Zk EB N 7r/ k) Z2(K)+(Zk EB N 7r/ k) D2+(Zk EB N 7r/ k) 

Table 2: The 22 untwisted symmetry groups ~ c r 

rK acts as -Ion 80(2) EB R and so is always contained in H. It follows that H = Z2(rK) or 

H = D2. It now suffices to determine whether or not r preserves ~o, that is, whether or not ~o is 

preserved by the transformation (9, t) 1--+ (-9, t). • 

2.2. Untwisted 8ymmetry Groups 

Suppose that ~ c r is a symmetry group. Then ~o = ~ n (80(2) EB R) is one of the subgroups 

listed in Table 1. We say that ~ is an untwisted subgroup of r if ~ is conjugate to a subgroup of the 

form K +~o where K is contained in the subgroup H given in Table 1. The untwisted symmetry 

groups are listed in Table 2. 

It is not the case that every subgroup K c H produces asymmetry group. For example, when 

~o = 80(2) EB R, the only symmetry group ~ corresponding to ~o is~ = r. (This is independent 

of the restriction to untwisted symmetry groups.) To verify this point, observe that 80(2) EB R 
acts transitively on the cylinder C. Hence if ~ is the symmetry group of a function f : C -+ R, then 

f is the constant function. It follows that f is invariant under r, and that the symmetry subgroup 

~=r. 

When ~o contains 80(2), the function f is constant on each horizontal cross-section of C and 

hence automatically has the symmetry r. In these cases, the only possibilities are K = Z2 (r) and 

K = D2. Similarly, when ~ contains R then automatically K E ~ and the only possibilities are 

K = Z2(K) and K = D2. 
In all other cases, there are no restrictions on K other than the condition K c H. 

2.3. Twisted 8ymmetry Groups 

We continue to suppose that ~ is a symmetry group with ~o = ~ n (80(2) EB R). We have 

~ c H +(80(2) EB R) where H is given in Table 1. The canonical projection 7r : r -+ D2 induces a 

projection 7r : ~ -+ H. 
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We say that a symmetry group :E c r is twisted if it is not conjugate to an untwisted symmetry 

group. Equivalently, there exists an A E 7r(:E) such that A ¢ :E. 

The next lemma states that, without loss of generality, we can always suppose that the element 

A = TK, is not responsible for twisting. 

Lemma 2.5 Suppose that :E is a symmetry group and that TK, E 7r(:E). Then there is a subgroup 

of r that is conjugate to :E and contains TK,. The conjugacy leaves :Eo unchanged. 

Proof: Recall that TK, acts as -Ion 80(2) EEl R. By assumption (TK" 8, t) E ::E for some (0, t) E 

80(2) EEl R. We conjugate by the element (-8/2, -t/2) E SO(2) EEl R. Compute that 

(1, (-8/2,-t/2))· (TK" (8,t»)· (1, (8/2,t/2») = (TK" (0,0)), 

as required. II 

Proposition 2.6 Let :E be a twisted symmetry group. Then either :Eo = Zk, :Eo = Zk EEl Z or 

:Eo = Zk EEl N 1r / k. In addition, 7r(:E) is one of the three subgroups Z2(T), Z2(K,) and D2. 

Remark: The possibility :Eo = Zk EEl N 1r / k will be eliminated in the proof of Theorem 2.7. 

Proof: It follows from Lemma 2.5 that we can eliminate the subgroups :Eo for which H = Z2 (TK,) , 

that is we can eliminate Zk EEl Land Zk EEl N w. 

Next, suppose that :Eo contains SO(2). As observed in the previous subsection, :E contains T. If 

:E is larger than Z2(T)+SO(2), then 7r(:E) = D2. It follows from Lemma 2.5 that TK, E :E and hence 

:E = D 2+:Eo. In either case, :E is untwisted. The possibility that :Eo contains R can be eliminated 

similarly. This completes the proof that :Eo is one of the groups Zk, Zk EEl Z or Zk EEl N 1r / k. 

Recall that 7r(:E) is a subgroup of D2. If 7r(:E) = 1, then :E = :Eo. If 7r(::E) = Z2(TK,), then :E is 

conjugate to Z2(TK,)+:EO by Lemma 2.5. Hence, for :E to be twisted, 7r(:E) must be one of the three 

remaining subgroups of D 2 . I 

Theorem 2.7 Up to conjugacy and scaling, there are seven twisted symmetry groups in r. These 

are as listed in Table 3. 

Proof: By Proposition 2.6, we can assume that :Eo = Zk, ZkEElZ or ZkEElN1r / k and that K = 7r(:E) 

is one of the subgroups Z2(T), Z2(K,) or D2. We consider the three possibilities for K in turn. 

Suppose that K = Z2(T). Then a = (T, (8, t)) E :E for some (8, t) E SO(2) EEl R. Conjugating 

by (-8/2,0) E SO(2) EEl R, we can set 8 = O. Note that 

a2 = (1, (0, 2t» E :Eo. 

When :Eo = Zk, it follows that t = 0 in which case a = T, and there is no twisting. When 

:Eo = Zk EEl Z, there is the additional possibility that 2t E Z but t ¢ Z. Since Z C :E, this reduces 

to the case t = 1/2. The argument is more complicated when :Eo = Zk EEl N 1r / k. Squaring yields the 

condition (0,2t) E Zk EEl N 1r/ k. Working modulo Zk EEl N 1r/ kl we can choose a so that t = 1. But 
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:Eo 7r(:E) generators of :E/'£o 

Zk Z2(X;) x; 

D2 7, x; 

Zk EB Z Z2(7) T 
Z2(X;) K, 

D2 7, K, 

D2 T, x; 

D2 T, x; 

Table 3: The 7 twisted symmetry groups '£ c r. :E is generated by :Eo together with the generators 

of :E/:Eo. Notation: K, = (x;, (7r/k, 0)), T = (7, (0, 1/2)) 

still working modulo N 1r / kl we can replace a by a = (7, (7r/k, 0)). Conjugating once again, we have 

0' = 7 and there is no twisting. 

The case K = Z2(X;) is similar. Conjugation reduces to a = (x;, (8,0)) and squaring yields the 

condition 28 E Zk. Twisting occurs when 8 = 7r/k but only for :Eo = Zk and :Eo = Zk EB Z. 

Finally, suppose that K = D 2 .· We concentrate attention on the two generators 

of E modulo Eo. Since the reflections are orthogonal, we can simultaneously conjugate so that 

81 = t2 = 0. Squaring the generators, we obtain that 82 E Z2k and either h = 0, 2h E Z or t1 E Z 

depending on whether :Eo = Zk, :Eo = Zk EB Z or Eo = Zk EB N 1r / k. The various combinations of 

generators yield one untwisted subgroup and one twisted subgroup for Eo = Zk, and one untwisted 

subgroup and three twisted subgroups for :Eo = Zk EB Z. Once again, there is no twisting when 

Eo = Zk EBN1r/ k . The arguments are similar to the previous cases of K; we replace O'j by untwisted 

group elements. II 

3. Classification of Columns 

The results of the previous section show that there are twenty-nine symmetry classes of columns. 

These symmetry classes can be distiguished by a sequence of questions. The most important 

question is: 

Are the symmetries of the column continuous, discrete and infinite, or finite? 

The column has continuous symmetries when the column can be slid along itself. These sym

metries can occur either by axial translations, rotations about the axis, or by a combination of 

the two. With two exceptions infinite discrete symmetry groups occur when the column is axially 

periodic but has no continuous symmetries. Both of the first two types of symmetry groups are 

infinite. If the symmetry group of a column is not infinite, then it is finite. 
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3.1. Columns with Continuous Symmetry 

If the column has both axial-translation and rotation symmetry, than the column is a cylinder 

with symmetry group r. Continuous symmetries come in three types: rotations about the column 

axis (columns of revolution), translations along the column axis (fluted columns), or corkscrew 

symmetries which are a mixture of the two (spiral columns). 

3.1.1. Columns of Revolution - Four Types 

There are four types of column with rotational SO(2) symmetry. Two types are periodic in the 

axial direction and two are not. The nonperiodic columns may have a refiection symmetry in the 

horizontal plane (D2+S0(2) - for example a column which is bowed out at the center) or not 

(Z2(T)+SO(2) - a column which widens at the base). See Figure 2. 

(a) (b) 

Figure 2: Nonperiodic columns of revolution. (a) No up-down reflection; (b) Up-down reflection. 

The periodic columns of revolution may have an up-down symmetry (D2+(SO(2) EEl Z)) or not 

(Z2(T)+(SO(2) EEl Z)). See Figure 3. 

(a) (b) 

Figure 3: Periodic columns of revolution. (a) No up-down reflection; (b) Up-down reflection. 
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3.1.2. Fluted Columns - Two Types 

All remaining symmetry groups have at least Zk symmetry for some k, that is, rotation symmetry 

through an angle 21r/k. In our description of this classification we "now set k = 1 with the un

derstanding that there is a version of each of the remaining columns for each natural number k. 

Indeed, the pictures we show all have k = 2. 

There are two types of columns with axial translation symmetry: those which have a plane of 

reflection across a plane containing the axis of the cylinder (D2+R) and those that do not (Z2+R). 
See Figure 4. 

(a) (b) 

Figure 4: Fluted columns. (a) No left-right reflection; (b) Left-right reflection. 

3.1.3. Spiral Columns - Two Types 

There are two types of-spirals - both of which have twisted translation symmetry. There are the 

spirals that are symmetric when the column is rotated by 1800 in a plane containing the axis of 

the cylinder (Z2(TK)+L) and those that do not have this symmetry (L). See Figure 5. 

(a) (b) 

Figure 5: Spiral columns. (a) No additional symmetry; (b) Up-down rotation. 



218 Martin Golubitsky and Ian Melbourne 

3.2. Columns with Discrete Symmetry 

There are two types of symmetry groups that are infinite and discrete - those with corkscrew 

symmetries and those without. 

3.2.1. Periodic Columns with No Corkscrew Symmetry - Eight Types 

Recall that r is a reflection through a plane containing the axis of the cylinder and /'i, is the reflection 

through the midplane - the up-down symmetry. Each of these symmetries has a glide reflection 

version 

f = (r, (0, 1/2)) K. = (/'i" (11",0)). 

There are ten subsets G c {r, f, /'i" K.} that form symmetry groups when coupled with Z. These 

subsets are: 
{/'i,} {r} {K.} {f} {r,/'i,} {f,/'i,} {r,K.} {f,K.} 0 {r/'i,}. 

The symmetry groups of the corresponding periodic columns are: < G, Z > - the group generated 

by G and Z. Examples of columns having one pure reflection symmetry are found in Figure 6. 

Examples of columns having precisely one glide reflection are given in Figure 7. Columns having 

two reflections or glide reflections are shown in Figure 8. The last two subsets correspond to 

symmetry groups that lie in infinite families and these infinite families have corkscrew symmetries. 

See Figure 10. 

(a) (b) 

Figure 6: Periodic columns with one reflection. (a) Up-down symmetric; (b) Left-right symmetric. 
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(a) (b) 

Figure 7: Periodic columns with one glide. (a) Up-down glide; (b) Left-right glide. 

(a) (b) 

(c) (d) 

Figure 8: Periodic columns with two reflections or glides. (a) Up-down and left-right reflections; 

(b) Up-down glide and left-right reflection; (c) Up-down reflection and left-right glide; (d) Up-down 

glide and left-right glide. 
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3.2.2. Discrete Corkscrew Columns - Five Types 

There are three column types having N1r symmetry. These columns remain the same when trans

lated in the axial direction a unit distance and simultaneously rotated through the angle 1800 (7r / k, 

in general). Among these columns are those that are invariant under reflection through the center

plane of the column (Z2(~))' those that are invariant under reflection through a plane containing 

the cylinder axis (Z2(r)) and those that are invariant under both reflections. See Figure 9. 

(a) (b) 

(c) 

Figure 9: Corkscrew columns with 7r/2 rotation. (a) Left-right reflection; (b) Up-down reflection; 

(c) Left-right and up-down reflections. 

There are two continuous families depending on w with discrete corkscrew motions (those with 

N w symmetry). See Figure 10. 

3.3. Columns with Finite Symmetry - Seven Types 

This types of column have neither a pure translation symmetry nor any symmetry that includes a 

translation symmetry. There are seven possible symmetry groups: 



A Symmetry Oassification of Columns 221 

\ (a) (b) 

Figure 10: Corkscrew columns with w rotations where 0° ~ w ~ 18r. (a) No additional symmetry; 

(b) Up-down rotation. 

An example of a column with no symmetry is given in Figure 11. Columns with just a single 

reflection or glide reflection are shown in Figure 12 while columns with exactly two reflection or 

glide reflection symmetries are shown in Figure 13. 

Figure 11: Column with no symmetries. 
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(a) (b) 

(c) (d) 

Figure. 12: Columns with a single symmetry. (a) Up-down reflection; (b) Up-down glide; (c) Left

right symmetric; (d) Up-down rotation. 
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(a) (b) 

Figure 13: Columns with two symmetries. Left-right reflection and: (a) Up-down reflection; (b) 

Up-down glide. 
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